七七影院色七七_免费观看欧美a一级黄片_亚洲综合久久久久久中文字幕_国产999999在线视频免费观看,国产小视频无码,国产精品亚洲日日摸夜夜添,女人高潮潮叫免费网站,久久影院国产精品,日韩成人在线影院,欧美囗交XX×BBB视频,色在线综合高清

機(jī)械社區(qū)

標(biāo)題: Geometry_of_Single_point_Turning_Tools_and_Drills [打印本頁(yè)]

作者: 機(jī)器鼠    時(shí)間: 2011-6-23 22:58
標(biāo)題: Geometry_of_Single_point_Turning_Tools_and_Drills
本帖最后由 機(jī)器鼠 于 2011-6-23 23:18 編輯
8 U3 e; `9 U  K0 C6 x9 e, I
- t: ^# _7 U1 y  a4 P3 cGeometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf
& S! c/ h( Y8 j+ n有要的嗎?刀具,,細(xì)節(jié),,很到位,。英文版,。% k8 F) g; n6 y+ b) |3 d
國(guó)內(nèi)無(wú)人這么細(xì)研究的吧,?
作者: 狙擊手    時(shí)間: 2011-6-24 19:17
說(shuō)什么的,?
作者: 機(jī)器鼠    時(shí)間: 2011-6-24 22:02
Although almost any book and/or text on metal cutting, cutting tool design, and # C. Q- [0 X1 A& l1 J
manufacturing process discusses to a certain extent the tool geometry, the body of
$ ~" [9 b3 L' i7 ~* V2 Dknowledge on the subject is scattered and  confusing. Moreover, there is no clear
4 Q1 E- M: h+ x# ~: zobjective(s) set in the selection of the tool geometry parameters so that an answer
1 A: ^7 |  Q# ]7 [5 {" _to a simple question about optimal tool geometry cannot be found in the literature
0 F- ~2 v* M. w4 A! pon the subject. This is because a criterion (criteria) of optimization is not clear, on & g5 q: t5 S  e" `* ]
one hand, and because the role of cutting tool geometry in machining process
% Z: g; g1 Z  Voptimization has never been studied systematically, on the other. As a result, many
/ T4 p9 U8 Q% npractical tool/process designers are forced to use extremely vague ranges of tool 8 L1 d. r- x  e+ ^: E
geometry parameters provided by handbooks. Being at least 20+ years outdated, 1 |# T3 u1 D2 I! |; G8 f
these data do not account for any particularities of a machining operation including
: [  \+ W9 X( f& m2 t) ma particular grade of tool material, the condition of the machine used, the cutting - W3 y; Z0 G& O6 y
fluid, properties and metallurgical condition of the work material, requirements to * D5 J3 J1 _! m
the integrity of the machined surface, etc.
. g7 M" T' d" J9 M5 O' G* C5 s  y8 q( P9 JUnfortunately, while today's professionals, practitioners, and students are
  t# D2 X  K8 A! k" g/ w2 Cinterested in cutting tool geometry, they are doomed to struggle with the confusing
9 W, Z% ]4 N$ k3 H7 bterminology. When one does not know what the words (terms) mean, it is easy to
4 \% N3 l* h3 r( A  N7 l* Oslip into thinking that the matter is difficult, when actually the ideas are simple, # q6 p) }4 E& l& t4 _
easy to grasp, and fun to consider. It is the terms that get in the way, that stand as a ( Q7 ?$ }" Q8 g
wall between many practitioners and science. This books attempts to turn those
0 ?. P* K" j' {- O% K+ }walls into windows, so that readers can peer in and join in the fun of proper tool
3 j* g( ?; y. l) X; A9 ?design.
% M' e$ t) S+ C$ L, r% DSo, why am I writing this book? There are a few reasons, but first and foremost,
3 |3 t; {4 |$ O3 V9 y9 ?4 fbecause I am a true believer in what we call technical literacy. I believe that # P) m+ ^2 ~( C9 o) X! z8 ?
everyone involved in the metal cutting business should understand the essence and ; u( d9 J4 b' l" z5 e
importance of cutting tool geometry. In my opinion, this understanding is key to   i. {4 F8 t0 U5 @: [' M5 x" y/ L
improving efficiency of practically all machining operations. For the first time, this : ^& _+ M3 Z$ l3 o8 z8 p% U; S
book presents and explains the direct correlations between tool geometry and tool $ e, ?. d1 L) J! ?& T
performance. The second reason is that I felt that there is no comprehensive book 1 t. T4 A' Q& d7 v
on the subject so professionals, practitioners, and students do not have a text from
9 [1 I, l! B3 ^which to learn more on the subject and thus appreciate the real value of tool
/ O- u9 O0 l: P1 L% o5 ?" q2 d# Zgeometry. Finally, I wanted to share the key elements of tool geometry that I felt 7 x: S' c+ ]8 W% b( X7 _/ p% u) B
were not broadly understood and thus used in the tool design practice and in
6 Y* G3 c% i% t) z1 l# E( Yoptimization of machining operations in industry. Moreover, being directly 2 m# R% O  {" r) H5 t) y1 {
involved in the launch of many modern manufacturing facilities equipped with % o6 t" Z- I1 x% Y2 b4 v5 _7 _# R# m
state-of-the-art high-precision machines, I found that the cutting tool industry is not
* X* O( O5 u1 {: D( }; B' wready to meet the challenge of modern metal cutting applications. One of the key
* Z; v2 |) G0 W: d. g! a6 Sissues is the definite lack of understanding of the basics of tool geometry of # v' ?; J* q/ _& A, x6 Q4 }
standard and application-specific tools.
; p: g0 B: H9 v% ]% i5 [- EThe lack of information on cutting tool geometry and its influence on the * j' \, V/ f0 n4 H8 j- U/ \
outcome of machining operations can be explained as follows. Many great findings
) j) k' q0 H+ e  C/ p: Ion tool geometry were published a long time ago when neither CNC grinding
9 W# s0 ?9 \5 Y  d! Lmachines capable of reproducing any kind of tool geometry were available nor
' \- i. s$ Y* q& _! Jwere computers to calculate parameters of such geometry (using numerical
1 {+ l" K6 q8 ]9 J% L& gmethods) common. Manual grinding using standard 2- and 3-axis simple grinding   y1 X& n2 `" k! V3 P
features was common so the major requirement for tool geometry was the simpler
. a+ U8 [, P9 |5 H+ m8 cthe better. Moreover, old, insufficiently rigid machines, aged tool holders and part
+ v* U1 G" \# Q, _fixtures, and poor metal working fluid (MWF) selection and maintenance levered
- q7 ?# {! s/ r/ X& ~any advancement in tool geometry as its influence could not be distinguished under ; f/ c5 C  p  H6 {
these conditions. Besides, a great scatter in the properties of tool materials in the
. C6 X: {5 J2 a' Npast did not allow distinguishing of the true influence of tool geometry. As a result, . Z: m0 S$ ^) Y9 ^) @4 }$ x" H3 L
studies on tool geometry were reduced to  theoretical considerations of features of
; h. g5 ?/ U6 C  G' k% t# U( Vtwist drills and some gear manufacturing  tools such as hobs, shaving cutters, 5 d: Y$ L& F6 Z& n. z7 Y
shapers, etc.  
% M9 P, w/ _  C% Q/ Q# PGradually, once mighty chapters on tool geometry in metal cutting and tool ) N8 ~/ }. i9 |. d# {
design books were reduced to sections of few pages where no correlation between
( k: V  H% |8 a% stool geometry and tool performance is normally considered. What is left is a * M* ?$ W" r) `5 r$ K
general perception that the so-called “positive geometry” is somehow better than
9 O/ E8 [/ a1 |- s# \/ N8 f“negative geometry.” As such, there is no quantitative translation of the word
: Y: A6 X& \( t; U+ D“better” into the language  of technical data although a great number of articles ! V6 [. \# G- l, w/ z  S
written in many professional magazines discuss the qualitative advantages of 3 S/ o% ]3 d1 {- k% ]
“positive geometry.” For example, one popular manufacturing magazine article
/ D5 b0 O+ p7 c' u( W) M) }read “Negative rake tools have a much  stronger leading edge and tend to push 3 j* N: F7 s& U' C9 w- s
against the workpiece in the direction of the cutter feed. This geometry is less free
6 b3 a; z" ?0 J0 X3 V  ^cutting than positive rakes and so consumes more horsepower to cut.” Reading
& r% {: I  _7 k5 T  }  dthese articles one may wonder why cutting tool manufacturers did not switch their + r( K% k: ]* C9 V  r
tool designs completely to this mysterious “positive geometry” or why some of / k5 R# j' m; A9 [
them still investigate and promote negative geometry.
/ W, ^# i' N# X; M. gDuring recent decades, the metalworking industry underwent several important
, y1 Q6 {  w+ C) ~changes that should bring cutting tool geometry into the forefront of tool design
( b5 f( ~: T1 _( \' zand implementation:
作者: 機(jī)器鼠    時(shí)間: 2011-6-24 22:03
1   What Does It Mean “Metal Cutting”? ...........................................................1 ; o1 J5 I- U9 \* d$ u6 [% a
1.1   Introduction ...............................................................................................1 ! U! A  E: h7 ^3 a
1.2   Known Results and Comparison with Other Forming Processes ..............2 5 y+ q; g- J5 ~& R  o/ t: G
  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2 * |7 J" h4 Y  W9 H& c. ]
  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  $ u5 R1 M5 W5 P
Operations .................................................................................................5 6 v7 S9 m1 G( x, u
1.3   What Went Wrong in the Representation of Metal Cutting?...................22 9 c$ Y6 A* A: U( l, U/ p
  1.3.1   Force Diagram..............................................................................23
3 {+ `* d4 l5 l' D' D+ N8 o  1.3.2   Resistance of the Work Material in Cutting.................................25
. s2 J' _: ]' ]$ C9 [+ X* ~) ?  1.3.3   Comparison of the Known Solutions for the Single-shear  2 v+ Z% U" p) @+ v  n* ~
  Plane Model with Experimental Results .................................................27 ( P+ C9 o/ o  r& h/ r- s
1.4   What is Metal Cutting?............................................................................28
& _/ D. U5 G+ A6 ^- z  1.4.1   Importance to Know the Right Answer........................................28
8 N4 m" D8 w( ^0 v4 K! P8 F 1.4.2  Definition .....................................................................................28 ; j: E0 Q8 Z" f6 |
  1.4.3   Relevance to the Cutting Tool Geometry.....................................29 4 G: H+ a( j: Z5 t3 E
1.5   Fundamental Laws of Metal Cutting.......................................................32 % u1 @7 ?1 I- R2 w2 Y6 K2 _
  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32
3 D" |2 n' g. L+ } 1.5.2  Deformation Law.........................................................................35 / p4 W& T) ?$ t. {6 Z/ }3 ^6 O! E9 M
References........................................................................................................50 6 D2 g* |: g, N/ E2 l
2   Basic Definitions and Cutting Tool Geometry,  , o+ }' K: b! M" O) m' a. `1 r
Single Point Cutting Tools ............................................................................55 - d& T# E$ N8 H- H$ k" Q& L  P
2.1   Basic Terms and Definitions ...................................................................55
. I: e/ M/ w; i 2.1.1  Workpiece Surfaces.......................................................................57
; D" L2 b( F0 ~ 2.1.2  Tool Surfaces and Elements ..........................................................57 ( V8 j5 D8 Z; \  d7 X; v- |4 @
2.1.3  Tool and Workpiece Motions.......................................................57
5 g. f8 Q3 U7 h1 Q 2.1.4  Types of Cutting ............................................................................58 * s* d* y& Q1 K: j  o2 q2 j% b! o
2.2   Cutting Tool Geometry Standards...........................................................60 & ]) A9 [; v8 r( I, {4 S
2.3   Systems of Consideration of Tool Geometry ..........................................61 , h8 w( o3 e0 k8 _
2.4.  Tool-in-hand System (T-hand-S) .......................................................647 v" n, k! B2 h- W' y
  2.4.1   Tool-in-hand Coordinate System.................................................64 5 a; C4 w. A, q9 A2 `' F  E
2.4.2  References Planes ........................................................................66 * {: X  N) h8 R6 P/ R& Y) w
2.4.3  Tool Angles..................................................................................68
, _5 D& O' l$ P) [# ]0 a6 H0 y  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74 1 c. T; e+ d0 k1 S$ d
2.5   Tool-in-machine System (T-mach-S)......................................................84 , I# J* {, t6 X) b' d. N
2.5.1  Angles ..........................................................................................84 ' z, g; V! @& }$ C' W  o( ]' g
  2.5.2   Example 2.3 .................................................................................88
. z" b* K1 n1 t% `2.6   Tool-in-use System (T-use-S) .................................................................90 9 z. [+ y  w/ F8 S
2.6.1  Reference Planes ..........................................................................91
# T/ S5 [9 S( k. b6 M 2.6.2  The Concept .................................................................................92 7 @, b4 U) @+ G( y: l9 o4 |
  2.6.3   Modification of the T-hand-S Cool Geometry .............................92 : m( n8 a) c0 v" g( C( D- R1 m: i
  2.6.4   Kinematic Angles.........................................................................98
$ S6 y+ e6 y5 `: u1 j- w' J  2.6.5   Example 2.4 ...............................................................................100 ) ]& Z. i. h  O3 N
2.7   Avalanched Representation of the Cutting Tool Geometry  . V( P* |% C- X$ I. R- F+ }9 b
in T-hand-S............................................................................................102 ) K' b3 C0 _4 X' n
2.7.1  Basic Tool Geometry .................................................................102
0 l/ @( S# N2 Q2 ~& Q0 f% g( D2.7.2   Determination of Cutting Tool Angles Relation
% m6 g5 m+ H( \$ \  for a Wiper Cutting Insert ..........................................................108
1 z6 g$ M1 V* r  2.7.3   Determination of Cutting Tool Angles  
; Z1 @) ]$ x% [   for a Single-point Tool ...............................................................110   N5 p% g+ ?3 U7 H
  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117
6 U7 J& s) @9 Z2 p  2.7.5   Summation of Several Motions..................................................119
+ d. e4 e* \2 Q; u% @3 E1 m  Z0 D( _References......................................................................................................125
( T  ~5 m# i# `( ]. a$ f+ e3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127 * p9 E0 @3 {' X3 C
3.1   Introduction ...........................................................................................127 ) e4 g5 Z( N/ L: z- Y( s
3.2   General Considerations in the Selection of Parameters  # a% W7 l! d1 H- m! @0 \
  of Cutting Tool Geometry .....................................................................129
: l( M4 S/ |" V 3.2.1 Known Results .............................................................................129
! [/ ^& ]( [4 u* o2 _) _5 g+ Q' I  3.2.2 Ideal Tool Geometry and Constrains............................................130 7 D! h8 a2 H, i4 R9 F
  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132
7 ], m" N6 M' h3 B( W7 p5 e3.3   Tool Cutting Edge Angles .....................................................................132
3 s# w9 d! b# L! @7 z! ^  U 3.3.1  General Consideration................................................................132
# F* P. K! t  _2 ]  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134 : O$ l, o1 i- |& l3 b. X
  3.3.3   Influence on the Surface Finish..................................................142
, A; @; }3 k( _3 |7 [1 o 3.3.4  Tools with κr > 90°.....................................................................144 2 [  e# L! N: m/ \$ J. ^  I
  3.3.5   Tool Minor Cutting Edge Angle ................................................147
+ b% s2 }6 Y( X7 P3.4.  Edge Preparation ...................................................................................161 6 O4 r! s1 C2 E8 P! W5 w
3.4.1  General .......................................................................................161 ' |$ ]$ h0 v& t9 ]
  3.4.2   Shape and Extent........................................................................163
$ C7 E9 C8 [6 I% V# W 3.4.3  Limitations .................................................................................163 , p7 v1 {; z8 U8 Y
  3.4.4   What Edge Preparation Actually Does.......................................169
/ `$ B( D. i: m& s3.5   Rake Angle............................................................................................171
) |" w4 G0 T) u1 w2 u/ A* F 3.5.1  Introduction................................................................................171 9 Y. B/ H5 J& @
  3.5.2   Influence on Plastic Deformation and Generazliations ..............175 : e0 D8 B7 K" _' S. t
  3.5.3   Effective Rake Angle .................................................................183 9 Y+ u* C& X/ |) J9 {
  3.5.4   Conditions for Using High Rake Angles....................................189
4 ]9 e: O6 D* ^% N6 N' {# L. o3.6   Flank Angle ...........................................................................................191 2 U% D- H7 a4 y/ c; f" w5 a. ^
3.7   Inclination Angle...................................................................................193 & n& j: _$ y( i  o
      3.7.1   Turning with Rotary Tools.........................................................195 ' p4 Y- Y/ }$ \$ C" y# D
3.7.2  Helical Treading Taps and Broaches..........................................197   j' u5 ]0 U7 `. H/ z$ H
3.7.3  Milling Tools..............................................................................198
& q( g- i3 h) L; g3 Z! _References......................................................................................................201
5 A% H- x0 {6 o8 X. l4   Straight Flute and Twist Drills ...................................................................205 * @& l5 H. e' d# M) c, @
4.1   Introduction ...........................................................................................205
9 c( v. e: N( X8 Z$ O: F4.2   Classification.........................................................................................206
, P  `5 I1 d9 {5 E2 I6 ~+ `; k4.3   Basic Terms...........................................................................................208
( d, }/ D7 D. r* o- k1 @# Y4.4   System Approach ..................................................................................211
2 y. \8 s0 B' b7 K6 J5 f6 x1 o 4.4.1  System Objective .......................................................................212
3 b  G4 e7 {6 m6 o 4.4.2  Understanding the Drilling System............................................212 , a0 X, ?9 P% U  A5 @3 k
  4.4.3.  Understanding the Tool..............................................................212
, Z/ W) v, I8 Y$ k4.5.  Force System Constrains on the Drill Penetration Rate ........................213
8 E- Q' _/ _, k, K8 U  4.5.1   Force-balance Problem in Conventional Drills ..........................213
. e' \1 @  ~0 H) q" Y  4.5.2   Constrains on the Drill Penetration Rate....................................218 * V2 L0 t! Y, L" }- S! X
4.5.3  Drilling Torque ..........................................................................219
# |5 c7 T: }, c# ]: l. h2 p 4.5.4  Axial Force.................................................................................220 8 }* M9 c" p: h$ i& ]3 c. c
  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221
% @# Y- Q/ w5 @8 d4.6   Drill Point ..............................................................................................223
0 M, h& B; t/ c! H9 |  X6 p 4.6.1  Basic Classifications ..................................................................223
" a/ l% i( J5 E% F8 n  4.6.2   Tool Geometry Measures to Increase the Allowable  2 H/ M. w+ p: {% g
Penetration Rate ....................................................................................224 - S/ G& d/ T  x& D
4.7   Common Design and Manufacturing Flaws..........................................259 9 i3 x' C. z5 a1 a: d
  4.7.1   Web Eccentricity/ Lip Index Error.............................................260 6 K( o4 S6 @( L0 ]' `4 s
  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261 2 f. @* W( B( E
4.7.3  Coolant Hole Location and Size.................................................263
3 d9 F- l, Z+ }- F4.8   Tool Geometry ......................................................................................267 4 j  Z2 Z: t' U# h
  4.8.1   Straight-flute and Twist Drills Particularities............................269
5 j* Z. w' ^/ X' z  4.8.2   Geometry of the Typical Drill Point ..........................................270
' |) h! L9 h5 |9 n4 c  4.8.3   Rake Angle.................................................................................272 / }+ K$ w) n: p" n+ `
  4.8.4  Inclination Angle .........................................................................280
$ I& i; g/ F. E2 e8 R7 ^) |8 w6 m 4.8.5  Flank Angle................................................................................281
# f1 E" ?6 ]+ @  4.8.6   Geometry of a Cutting Edge Located at an Angle  $ Z) C# O6 p4 C1 f4 I. q  L
   to the y0-plane ............................................................................292
) [  ^9 }: U  D) }) h 4.8.7  Chisel Edge ................................................................................295
! e7 ?' ?0 P1 J+ A  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306
4 K; G+ C7 ]+ E1 {$ I; q: C  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310
  P; L: g2 N* Z. I* j- @; r4 @ 4.8.10  Flank Formed by Quadratic Surfaces.........................................313 4 L( D0 {) V7 [( G( M
4.9   Load Over the Drill Cutting Edge .........................................................324 2 M1 I. \5 L/ x. |! m7 y* n
   4.9.1   Uncut Chip Thickness in Drilling ..............................................325 4 E0 o* Y  X9 n1 D
  4.9.2   Load Distribution Over the Cutting Edge ..................................327 ) X2 ?9 P7 G  Y: F. C) S: r
4.10  Drills with Curved and Segmented Cutting Edges ................................328
' c4 Z# R2 |) ?  v1 h  y1 j  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329
& c( P. e: y5 I' \  4.10.2 Rake Angle.................................................................................332
$ b7 c. R: y# q5 UReferences......................................................................................................337
: _# U( P# G3 d3 t8 X" z5 [5   Deep-hole Tools............................................................................................341 3 t. t; `, ]( O% b4 C2 i
5.1   Introduction ...........................................................................................341 + l% ~# ^; }  j5 @' q, @1 l
5.2   Generic Classification of Deep-hole Machining Operations.................343 * I4 K! ?/ L* t7 y
5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345
  J# q$ D3 d( N7 y: |( S0 H; H2 a  5.3.1   Force Balance in Self-piloting Tools..........................................345 0 ], d6 Q: I: a( f  B" S/ q+ [
5.4   Three Basic Kinematic Schemes of Drilling .........................................350
! ?. ?1 i/ f! e) ]/ w' x  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351 & b# s' a; P4 n8 t0 {( I
5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352 ' o0 \4 n- [, t  ]0 l: p7 e' u$ U
5.4.3  Counterrotation ..........................................................................352
& J5 j* G% \( {! {+ D! [5.5   System Approach ..................................................................................353 ' `1 O. x* @/ r& q/ t" ^
  5.5.1   Handling Tool Failure ................................................................353 / ^/ p3 p. S. t3 F+ X
5.5.2  System Considerations ...............................................................354 , t8 k8 d" H7 c0 d8 s& B6 V" X/ l
5.6   Gundrills................................................................................................362
* ]$ c. L( t% ]- v! d+ U 5.6.1  Basic Geometry..........................................................................362 / Q- Q  ]0 }/ p, i
5.6.2  Rake Surface ..............................................................................365 $ m4 i% f8 a. M& E$ Q
  5.6.3   Geometry of Major Flanks .........................................................370 * @/ M9 R% `, h! `
5.6.4  System Considerations in Gundrill Design ................................390 6 ]1 M4 n. W) q* y$ b/ V
5.6.5   Examplification of Significance of the High MWF Pressure
4 t1 d# j, E; O: E- q6 @  in the Bottom Clearance Space ..................................................423 2 r# r3 i7 Y+ z. ^6 S2 _2 `
  5.6.6   Example of Experimental Study ................................................425 2 T4 p  z/ k: }" b& i; A1 c
  5.6.7   Optimization of Tool Geometry.................................................439
* s" T9 \! V6 P% h+ I# UReferences......................................................................................................440
! r$ u" t; B# R" [5 y: m8 zAppendix A  % }5 f/ L4 P+ I( K
Basic Kinematics of Turning and Drilling.......................................................443
+ H! P: s' I- Y) |  j/ oA.1   Introduction ...........................................................................................443 : }9 i! H1 L2 q; n! p
A.2  Turning and Boring ...............................................................................444 ( u* J* |( f4 `5 m6 Q# z/ E6 M# `
  A.2.1  Basic Motions in Turning...........................................................444
1 e$ j$ @3 E& n8 n$ |. y  A.2.2  Cutting Speed in Turning and Boring ........................................448
4 V7 k4 m& A. W- M) r/ A  A.2.3  Feed and Feed Rate ....................................................................448 5 F) O  K. [" C: Y9 h" [
  A.2.4  Depth of Cut...............................................................................449
4 n9 n4 k! Y3 u  k9 q; b A.2.5  Material Removal Rate ..............................................................449
! N2 A" d3 o* Q' B* t A.2.6  Resultant Motion........................................................................450
& \: Y5 f& ~" E/ rA.3  Drilling and Reaming ............................................................................450 . b4 {/ N$ l* b
A.3.1  Basic Motions in Drilling...........................................................450
+ R( N1 }: \. t; @. G A.3.2  Machining Regime.....................................................................451 5 E: Z4 B+ s8 F6 D
A.4  Cutting Force and Power .......................................................................453 1 i+ ]( `# T# E+ d
  A.4.1  Force System in Metal Cutting...................................................453 ' i( R3 U4 M  ]! ^" G% O$ v3 J
  A.4.2  Cutting Power ............................................................................454
+ K2 p' t  _9 K A.4.3  Practical Assessment of the Cutting Force.................................455 9 _# X! m5 {+ P. X
References......................................................................................................461 % ~! I2 [% _; D0 x; `" s  w1 O
Appendix B  6 G& _8 O  ]1 m" @! s) q6 Z% q6 M
ANSI and ISO Turning Indexable Inserts and Holders.................................463 7 e8 V* t0 O) I4 r
B.1   Indexable Inserts ...................................................................................463
. a3 C/ u3 [8 E% N% @& I8 a  B.1.1  ANSI Code .................................................................................464 " h& P6 G( `$ ]: b" K# O7 y
B.1.2  ISO Code....................................................................................471 3 N$ `2 {2 _# B9 C, m. F. B
  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491
* H2 J- ^: w( w7 I  B.2.1   Symbol for the Method of Holding Horizontally Mounted  
4 @, D" [6 s# b1 ]' O0 c Insert – Reference Position (1) ..............................................................492
% Z0 U1 w5 S, l+ j; d" Z  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493   S4 o2 q/ `& d# g$ ]0 H+ O
  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493 8 D' I& ]; E, z( o
  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  ' k- |7 t& w+ j$ T
   Reference Position (4)................................................................494 . u  E0 c3 ?, {+ C: @8 v
  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494 5 o: v- |# R6 n( V" y( l
  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  
( H/ F8 U" W" q# U. G% r/ R. H/ x    and Height of Cutting Edge) - Reference Position (6) ...............494 ) i5 D$ a2 t; L( D: ]0 A
  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  
3 E4 O/ Q( }; C9 T% Q, W   Reference Position (7)................................................................495
+ u8 u: X; o5 P2 R4 L8 P  B.2.8  Number Symbol Identifying Tool Length –  3 Y) I( C" d8 I  S
   Reference Position (8)................................................................495 7 Q3 z0 o, ?, n1 X- w
  B.2.9   Letter Symbol Identifying Indexable Insert Size –  & g2 _7 z( `2 |& R( _; w7 J6 f, m
   Reference Position (9)................................................................497
& f9 g8 x% @) l' h$ V" V; ?Appendix C  . _9 w' ^) X) ?) E5 O# q
Basics of Vector Analysis ..................................................................................499 9 I# |/ \* Z+ s
C.1   Vectors and Scalars ...............................................................................499 ! x4 u# T/ [" e1 o* p
C.2   Definition and Representation...............................................................500
. o0 u& M( p( Z C.2.1  Definitions..................................................................................500 & @* z% h3 k6 L/ X) a
C.2.2  Basic Vector Operations ............................................................503 6 g- I8 c/ T9 S
C.3   Application Conveniences.....................................................................509
- M  p) x& s3 r4 ?# M6 J8 wC.4  Rotation: Linear and Angular Velocities...............................................511
. P+ p3 d* D" p4 H. s) M; F' G5 o  C.4.1   Planar Linear and Angular Velocities ........................................511
8 P5 ]+ K/ {$ A" n  C.4.2   Rotation: The Angular Velocity Vector .....................................515 $ v: t6 C- \- t% N. s5 Y
References ...........................................................................................................518 , ^0 r, I. L  z  @
Appendix D  # H$ ^! c  P6 E; Y4 g. j* W
Hydraulic Losses: Basics and Gundrill Specifics............................................519 % N- T: A! K6 F- D0 O, A
D.1  Hydraulic Pressure Losses – General ....................................................519 ( c# P4 j- }' c4 i# N; z
D.1.1  Major Losses: Friction Factor ....................................................520 & r0 Y3 z( M- n3 U0 t
  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521
$ G9 Z9 a) m" I: ^ D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521 + [* u/ ?( c6 Z5 K
  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522
* S7 g( p) H  y, l4 U# B5 A2 I8 D/ M  D.2.3  Example D.1...............................................................................527
4 r$ z9 S3 T; a; jD.3   Inlet MWF pressure...............................................................................528
' a4 e& t6 A5 ND.4  Analysis of Hydraulic Resistances ........................................................532
$ r: m( b& K" V3 }$ g' @2 s/ z  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  : Y& R' B+ r1 z/ i$ T! Y! |
    Has No or Little Control ............................................................532 ( Q5 h  x* d( k
  D.4.2  Variable Resistances Over Which the Designer Has Control ....535
) ?1 \$ i' H- H: hD.5   Practical Implementation in the Drill Design ........................................539 # z6 h. C6 p- }8 J. ]+ U1 o) u
References ..........................................................................................................543 2 P3 Z/ H$ A2 r2 f( P2 c
Appendix E $ w( G; ^/ w. f, w  z; b
Requirements and Examples of Cutting Tool Drawings................................545
/ @5 Y# X% p( L. T% a% D/ a8 F4 KE.1   Introduction ...........................................................................................545 8 F7 H: C9 T/ h/ U: {+ t0 _
E.2   Tool Drawings – the Existent Practice ..................................................546 " {, {2 g6 z$ l/ F1 y) y: o; l' D
E.3   Tool Drawing Requrements ..................................................................548
2 S3 @3 k8 F3 Y5 @  uE.4   Examples of Tool Drawing ...................................................................553
5 g2 e( w* z  fReferences ..........................................................................................................559
. k( D4 V( b. }3 W2 z! hIndex…………………………………………………………………………….561
. U0 e  D( O9 D9 w " V) ?1 d: K( p( \7 I  c% P
. R8 w$ Y3 f/ j8 i! p7 x% x2 _, p

作者: 李東ld    時(shí)間: 2011-6-25 13:07
都是些神馬,?
作者: showmark    時(shí)間: 2011-6-25 13:33
埋頭挖礦中。,。。,。,。。,。,。。
作者: lpg1988    時(shí)間: 2011-6-26 15:14
好東西啊,。,。。只是,,刀具不是我的工作,。。。頂起,,不沉,。。,。
作者: 機(jī)器鼠    時(shí)間: 2011-6-26 18:10
專業(yè)人士自有看法,。
作者: 招魂者    時(shí)間: 2011-6-27 18:42
好東西啊,英文的,,看著太費(fèi)勁了
作者: 招魂者    時(shí)間: 2011-6-27 21:53
從網(wǎng)上查找這本書是Springer Series in Advanced Manufacturing叢書中的一本
2 L; J" ?$ E7 F9 m6 X) U8 i9 T請(qǐng)問這套叢書共包含哪幾本書
作者: 狙擊手    時(shí)間: 2011-6-27 23:51
有翻譯了的嗎,?* t! f8 M. K* b
鳥語(yǔ),麻煩,!
作者: 狙擊手    時(shí)間: 2011-6-27 23:51
有翻譯了的嗎,?
& s* A( e1 b2 E: x2 j- h鳥語(yǔ),麻煩,!
作者: 機(jī)器鼠    時(shí)間: 2011-6-28 18:40
有機(jī)會(huì)時(shí)間誰(shuí)翻譯了,,可以做高手了。非“磚家”,。
作者: Valar_Morghulis    時(shí)間: 2013-8-12 10:13
這東西太好了,。
作者: Valar_Morghulis    時(shí)間: 2013-8-12 10:18
怎么下不了
作者: apple--apple    時(shí)間: 2013-8-13 22:29
看著不錯(cuò)的資料
作者: 把刀用好    時(shí)間: 2013-8-15 09:46
下了不能解壓縮。,。,。
作者: quzhihua1016    時(shí)間: 2013-11-1 13:27
把刀用好 發(fā)表于 2013-8-15 09:46 ) E( h0 o1 j. x0 x
下了不能解壓縮。,。,。

$ r" [5 G# l  o4 w5 E! b真的不能夠解壓縮嗎
0 C) ?2 M; n% U4 l2 S) L  I# L
作者: gshryl    時(shí)間: 2019-12-20 14:36
怎么解壓不了
作者: stc223    時(shí)間: 2019-12-24 13:39
好東西,還有沒有其他類似的資料呢




歡迎光臨 機(jī)械社區(qū) (http://97307.cn/) Powered by Discuz! X3.4