標(biāo)題: Geometry_of_Single_point_Turning_Tools_and_Drills [打印本頁] 作者: 機器鼠 時間: 2011-6-23 22:58 標(biāo)題: Geometry_of_Single_point_Turning_Tools_and_Drills 本帖最后由 機器鼠 于 2011-6-23 23:18 編輯 - Z/ W& p# u2 C J: y; R
2 \! P, d- F+ L. @6 G2 C; Y- ]7 }
Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf 8 Y" p& f! E2 i7 e5 H ^有要的嗎?刀具,,細(xì)節(jié),,很到位。英文版,。8 T/ P) d2 a- p. Q9 I
國內(nèi)無人這么細(xì)研究的吧?作者: 狙擊手 時間: 2011-6-24 19:17
說什么的,?作者: 機器鼠 時間: 2011-6-24 22:02
Although almost any book and/or text on metal cutting, cutting tool design, and 0 X& F* P; J- w/ ^: `& `
manufacturing process discusses to a certain extent the tool geometry, the body of 5 x( P* y2 t3 t" ^) s
knowledge on the subject is scattered and confusing. Moreover, there is no clear " @8 b B' \5 c, } N9 ]( \; R* Z/ C0 Yobjective(s) set in the selection of the tool geometry parameters so that an answer 8 k! ?) B5 e' H/ z/ a. Hto a simple question about optimal tool geometry cannot be found in the literature 2 l/ b+ d/ t$ Y7 Y* d& g* o
on the subject. This is because a criterion (criteria) of optimization is not clear, on ; X9 c1 R8 T* I4 yone hand, and because the role of cutting tool geometry in machining process 8 V: C) r. J2 ]optimization has never been studied systematically, on the other. As a result, many 5 O- [' ^- T0 P3 @' `practical tool/process designers are forced to use extremely vague ranges of tool 7 h3 H" w* ?5 Rgeometry parameters provided by handbooks. Being at least 20+ years outdated, 8 Z5 `6 [7 t @+ N4 ]3 }* Uthese data do not account for any particularities of a machining operation including & N, H) x: [6 g& P, V& B; J
a particular grade of tool material, the condition of the machine used, the cutting 5 |9 m0 L L. J
fluid, properties and metallurgical condition of the work material, requirements to , V3 S; \' I$ [4 ?" g- m6 P
the integrity of the machined surface, etc. : m: E+ C* s+ d. {" B) k0 C1 j/ lUnfortunately, while today's professionals, practitioners, and students are 8 |) w: T2 f" I* j. d5 ~; H
interested in cutting tool geometry, they are doomed to struggle with the confusing $ z3 Q$ v$ P" P7 ]
terminology. When one does not know what the words (terms) mean, it is easy to 7 H$ k4 b) L, `; \ p2 _, ^: l
slip into thinking that the matter is difficult, when actually the ideas are simple, 9 y% T+ b! j$ M' Q# ^2 J: Jeasy to grasp, and fun to consider. It is the terms that get in the way, that stand as a 0 @/ `$ j- w4 e+ N8 T$ N" {
wall between many practitioners and science. This books attempts to turn those ; O6 `1 k$ ~ A
walls into windows, so that readers can peer in and join in the fun of proper tool * R6 X& \3 E+ I- D
design. ( R/ R. O1 q+ M/ w, E
So, why am I writing this book? There are a few reasons, but first and foremost, ! g) U* O2 ?! D
because I am a true believer in what we call technical literacy. I believe that ! C3 e6 N" D7 ?+ D
everyone involved in the metal cutting business should understand the essence and + ^! @+ C2 q) ?, E: U9 zimportance of cutting tool geometry. In my opinion, this understanding is key to 9 [5 D$ D$ e' D" j$ i, Timproving efficiency of practically all machining operations. For the first time, this % U) m5 A, I4 I* b# K3 dbook presents and explains the direct correlations between tool geometry and tool 6 b" n3 _3 R# v7 j
performance. The second reason is that I felt that there is no comprehensive book . s4 c( N2 |6 l9 g, A+ Yon the subject so professionals, practitioners, and students do not have a text from # x& |: |5 N; H6 f$ E. rwhich to learn more on the subject and thus appreciate the real value of tool 4 \6 n7 v; v Z; O9 r
geometry. Finally, I wanted to share the key elements of tool geometry that I felt $ y+ j5 w) X1 R, pwere not broadly understood and thus used in the tool design practice and in ; ^& D {, E \
optimization of machining operations in industry. Moreover, being directly 6 a7 C2 ^* I/ {7 c8 D% `2 j. E1 xinvolved in the launch of many modern manufacturing facilities equipped with & k9 B' C0 P* T7 p+ E2 M9 c) }
state-of-the-art high-precision machines, I found that the cutting tool industry is not 7 W# [% c3 z. y& mready to meet the challenge of modern metal cutting applications. One of the key " I8 M6 K/ l) o- J+ missues is the definite lack of understanding of the basics of tool geometry of 2 x! O0 ?7 } m- k
standard and application-specific tools. - E& d0 r' U3 y4 w5 CThe lack of information on cutting tool geometry and its influence on the ; Z+ x6 N0 r! C- p4 H
outcome of machining operations can be explained as follows. Many great findings 1 S4 v, B) q' x3 K, H& V! \! q% h) bon tool geometry were published a long time ago when neither CNC grinding - L+ L6 F+ s! U% E, b+ G" `
machines capable of reproducing any kind of tool geometry were available nor ' J/ P A# P0 [- ?& w+ v
were computers to calculate parameters of such geometry (using numerical 9 E3 |$ r% h1 ?, T9 Smethods) common. Manual grinding using standard 2- and 3-axis simple grinding ) I) ?0 R( c3 _# @+ W0 |: Mfeatures was common so the major requirement for tool geometry was the simpler & O# q! R% v- Gthe better. Moreover, old, insufficiently rigid machines, aged tool holders and part $ A# n9 M) v5 f+ E: {fixtures, and poor metal working fluid (MWF) selection and maintenance levered : B% C, Z P3 u+ u& iany advancement in tool geometry as its influence could not be distinguished under 4 K, {7 I7 h* X4 m4 g* Sthese conditions. Besides, a great scatter in the properties of tool materials in the - O2 ~$ V+ A3 k& Y, e8 b
past did not allow distinguishing of the true influence of tool geometry. As a result, % o* k* E; F- H/ k
studies on tool geometry were reduced to theoretical considerations of features of 1 c. c6 A( t+ Y, X( W# `
twist drills and some gear manufacturing tools such as hobs, shaving cutters, % ?& a0 ]5 m: r! n8 U5 e) o: Y
shapers, etc. / W% w- b4 _$ S) V. ?
Gradually, once mighty chapters on tool geometry in metal cutting and tool n- B* i' h( Q$ Jdesign books were reduced to sections of few pages where no correlation between # l4 U9 }# u) @0 l$ Ztool geometry and tool performance is normally considered. What is left is a . z0 U! g$ T; X7 z6 v; xgeneral perception that the so-called “positive geometry” is somehow better than 1 V7 s0 M9 M& E0 ]3 S( V V
“negative geometry.” As such, there is no quantitative translation of the word # `' i7 y' U; j1 M& x$ |
“better” into the language of technical data although a great number of articles / O2 K# m y. ]$ k
written in many professional magazines discuss the qualitative advantages of & J P* x* T6 D" l2 v. u5 T4 D
“positive geometry.” For example, one popular manufacturing magazine article 8 t, l, N, `0 \" b7 _. ~) e4 b
read “Negative rake tools have a much stronger leading edge and tend to push 4 `5 Y9 m5 ^$ `
against the workpiece in the direction of the cutter feed. This geometry is less free # _6 k# ^, N3 l n* T" xcutting than positive rakes and so consumes more horsepower to cut.” Reading % R# B3 m0 B8 r/ z
these articles one may wonder why cutting tool manufacturers did not switch their , p2 F8 z' @' _. m7 b
tool designs completely to this mysterious “positive geometry” or why some of " W4 p) U+ p! @, B! d: `6 x6 P# Lthem still investigate and promote negative geometry. - w' e( G# Z7 E+ V4 W f
During recent decades, the metalworking industry underwent several important / {- E1 h/ b4 `, M
changes that should bring cutting tool geometry into the forefront of tool design ' [" Q* }9 H) c1 g5 \ T5 `
and implementation: 作者: 機器鼠 時間: 2011-6-24 22:03
1 What Does It Mean “Metal Cutting”? ...........................................................1 2 ~( I/ O: ]5 e3 r. }1.1 Introduction ...............................................................................................1 1 M( W# q+ S+ U- @) \: u) u1.2 Known Results and Comparison with Other Forming Processes ..............2 . ?- h$ n# x+ h0 i8 [6 G& a, H
1.2.1 Single-shear Plane Model of Metal Cutting ...................................2 0 Y- i+ U: D* a6 E 1.2.2 Metal Cutting vs. Other Closely Related Manufacturing 2 |* s- R. |0 d- k* E3 M( P2 d
Operations .................................................................................................5 ( a3 ]1 T# |3 h- V g& Q! N
1.3 What Went Wrong in the Representation of Metal Cutting?...................22 8 d/ R# f7 @: x* ^
1.3.1 Force Diagram..............................................................................23 9 j( e( f0 n! } 1.3.2 Resistance of the Work Material in Cutting.................................25 Q* B7 c5 i; z) O
1.3.3 Comparison of the Known Solutions for the Single-shear - I. u; p( y3 E+ B5 f
Plane Model with Experimental Results .................................................27 " M" R9 f$ ]% \. Q8 W. ?1.4 What is Metal Cutting?............................................................................28 , P# Y V/ F; E/ U0 n. q: l
1.4.1 Importance to Know the Right Answer........................................28 0 a7 \0 j6 m2 n 1.4.2 Definition .....................................................................................28 * {$ t5 U0 v" _' x$ x- n" B* }
1.4.3 Relevance to the Cutting Tool Geometry.....................................29 4 t8 I% Z- Y$ K/ B; D; d, E6 b! o1.5 Fundamental Laws of Metal Cutting.......................................................32 / T. x2 `2 X* s; J8 P
1.5.1 Optimal Cutting Temperature – Makarow’s Law........................32 5 h( v3 b$ i3 y: _9 x9 u 1.5.2 Deformation Law.........................................................................35 M! E0 g) r% v; P( j7 @References........................................................................................................50 ' A* v3 H9 W3 A: z! @) P; {2 S# u 2 Basic Definitions and Cutting Tool Geometry, 9 q5 V3 w" g1 w9 zSingle Point Cutting Tools ............................................................................55 ( I/ `9 P3 A. X( |4 O2.1 Basic Terms and Definitions ...................................................................55 - l; x' z# U6 s1 D1 D 2.1.1 Workpiece Surfaces.......................................................................57 2 [ Q& T7 W8 n 2.1.2 Tool Surfaces and Elements ..........................................................57 + f1 j2 ]$ D4 y- |' t+ C
2.1.3 Tool and Workpiece Motions.......................................................57 H! _/ L* l; a4 [0 e 2.1.4 Types of Cutting ............................................................................58 : Q6 O) J+ B) z* G2.2 Cutting Tool Geometry Standards...........................................................60 2 C9 [& i: E* @) t: f2.3 Systems of Consideration of Tool Geometry ..........................................61 ( k+ @9 w, I+ a8 O2.4. Tool-in-hand System (T-hand-S) .......................................................64 - m( f- c9 o8 O* |% r5 a m 2.4.1 Tool-in-hand Coordinate System.................................................64 & f1 d6 k: k* m1 k9 ^8 j5 ^
2.4.2 References Planes ........................................................................66 7 m/ J( ^/ S7 U; p 2.4.3 Tool Angles..................................................................................68 1 A0 k ~$ M! z: _+ L/ h& r
2.4.4 Geometry of Cutting Tools with Indexable Inserts ......................74 7 t G4 H9 y) x9 X8 _
2.5 Tool-in-machine System (T-mach-S)......................................................84 ) ^1 y' } @3 b7 {* ~3 ?+ V
2.5.1 Angles ..........................................................................................84 + W" E. Q# l* h( ^3 o& l$ M0 } 2.5.2 Example 2.3 .................................................................................88 0 {% q/ C: }3 Z5 I2 M
2.6 Tool-in-use System (T-use-S) .................................................................90 5 @- i, g/ A7 D& V
2.6.1 Reference Planes ..........................................................................91 2 e+ _% ~9 Y" J1 j; n6 s 2.6.2 The Concept .................................................................................92 ! g3 W( k" L$ N* O9 q 2.6.3 Modification of the T-hand-S Cool Geometry .............................92 - w. l* ]' E" R# A2 k* @ 2.6.4 Kinematic Angles.........................................................................98 # \. L* ^8 l, l5 J 2.6.5 Example 2.4 ...............................................................................100 6 m1 H% G4 U8 g" H9 a2.7 Avalanched Representation of the Cutting Tool Geometry : o: {- P2 R! Q" E in T-hand-S............................................................................................102 - Y6 u) a. z0 I, q9 { 2.7.1 Basic Tool Geometry .................................................................102 q4 h; j' I4 F+ e
2.7.2 Determination of Cutting Tool Angles Relation i! L7 y. L/ k% O4 ^
for a Wiper Cutting Insert ..........................................................108 6 p& K$ d6 U& v% [3 h
2.7.3 Determination of Cutting Tool Angles $ N e: W9 D: u
for a Single-point Tool ...............................................................110 4 n) s6 f9 c7 B3 a/ k2 M6 b6 z
2.7.4 Flank Angles of a Dovetail Forming Tool .................................117 % Q' J: H% d& ~ 2.7.5 Summation of Several Motions..................................................119 / G! J M# ?( ~; J4 h
References......................................................................................................125 3 F9 i) b7 R0 X/ b$ t# Q* Y
3 Fundamentals of the Selection of Cutting Tool Geometry Parameters...127 3 K6 ~% ^) G, r/ q1 }1 f3.1 Introduction ...........................................................................................127 , i4 l e& _; @* U7 X3.2 General Considerations in the Selection of Parameters ( N- x) H& q" b1 U of Cutting Tool Geometry .....................................................................129 * y; L& i( ?4 H+ M3 Q& l 3.2.1 Known Results .............................................................................129 / _7 w; x/ L* i
3.2.2 Ideal Tool Geometry and Constrains............................................130 6 _. y( p7 b+ V2 Y$ V% z2 f
3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132 1 I4 V( g) [& h5 c! K B6 ^
3.3 Tool Cutting Edge Angles .....................................................................132 4 J& k4 N* ~* _6 [$ F
3.3.1 General Consideration................................................................132 : z8 P8 F3 x: t* g* v9 u
3.3.2 Uncut ChipT in Non-free Cutting ..............................................134 ; V0 I6 t/ u! A5 ]$ V 3.3.3 Influence on the Surface Finish..................................................142 + }* ~# F! e- l9 {
3.3.4 Tools with κr > 90°.....................................................................144 % L8 x1 G( v* a! O8 l
3.3.5 Tool Minor Cutting Edge Angle ................................................147 9 h/ ?, [1 X& X( h a9 ], d+ t
3.4. Edge Preparation ...................................................................................161 1 v; g" x% Q" d) P$ ^# o1 ?
3.4.1 General .......................................................................................161 : f. N! _0 [" Q- Y, I4 d0 B 3.4.2 Shape and Extent........................................................................163 . h* j, M5 d( W5 R- A& g 3.4.3 Limitations .................................................................................163 6 m& s( t2 b0 s6 T5 _ 3.4.4 What Edge Preparation Actually Does.......................................169 + Y6 N! C/ Q/ F$ n+ z9 s& B
3.5 Rake Angle............................................................................................171 4 O1 b' p: q# ] @" F 3.5.1 Introduction................................................................................171 6 C0 C" L( S2 { 3.5.2 Influence on Plastic Deformation and Generazliations ..............175 3 v- ]5 l. g% {; b( S$ V) E$ y% O' l: Z
3.5.3 Effective Rake Angle .................................................................183 - j9 \0 F& l/ m' Y0 Q5 r
3.5.4 Conditions for Using High Rake Angles....................................189 , r( {/ p, `* w2 q3.6 Flank Angle ...........................................................................................191 , c# {* w* u; {+ Z4 Q2 J
3.7 Inclination Angle...................................................................................193 3 o- Z) x1 ~* z0 i
3.7.1 Turning with Rotary Tools.........................................................195 7 {, P! C# Q$ U7 J1 Z& d
3.7.2 Helical Treading Taps and Broaches..........................................197 ' E/ i, ]! h* U; U# F 3.7.3 Milling Tools..............................................................................198 0 A5 i) p# r$ d0 LReferences......................................................................................................201 2 O6 S. ], M- a8 x) n# s4 Straight Flute and Twist Drills ...................................................................205 ) e5 H; {- ?3 y! H1 V/ T1 D/ K6 u
4.1 Introduction ...........................................................................................205 + P8 ^# @! V& t5 ~: ], W9 M4.2 Classification.........................................................................................206 5 J4 ?6 m4 M% k: |, D1 W* L& ]# f) `4.3 Basic Terms...........................................................................................208 C, Z5 a! H" i& N1 P( e8 Z# Q
4.4 System Approach ..................................................................................211 ' ]% @. c9 j: ]& `# c 4.4.1 System Objective .......................................................................212 ! M- q# [5 ]/ y5 [( |1 @- \ 4.4.2 Understanding the Drilling System............................................212 4 A5 _/ s. Z. X) R7 ]5 v! Q: c 4.4.3. Understanding the Tool..............................................................212 5 _ P+ C' l5 d
4.5. Force System Constrains on the Drill Penetration Rate ........................213 P. V2 m' L3 I: N+ n& Q( y
4.5.1 Force-balance Problem in Conventional Drills ..........................213 - c* F5 E1 M5 e; t 4.5.2 Constrains on the Drill Penetration Rate....................................218 4 V0 E9 O- y4 K$ D) r& b# ?3 q8 Z$ W% U
4.5.3 Drilling Torque ..........................................................................219 % a$ D% B1 }7 [6 z0 [ 4.5.4 Axial Force.................................................................................220 # u- I4 j; H, ~) E: w' v9 C1 k 4.5.5 Axial Force (Thrust)-torque Coupling .......................................221 ! R! p' o4 i+ h9 V) ^ f4.6 Drill Point ..............................................................................................223 7 d! A' q$ a/ Q 4.6.1 Basic Classifications ..................................................................223 6 m) q) @/ } R' g 4.6.2 Tool Geometry Measures to Increase the Allowable 7 `' \3 r, u. X1 S* S' S
Penetration Rate ....................................................................................224 / c, j# B) \% j! V! n X* {
4.7 Common Design and Manufacturing Flaws..........................................259 + H- v6 X. S% {3 {/ [' ]; n 4.7.1 Web Eccentricity/ Lip Index Error.............................................260 - L# j# }7 Z! j, q. x' @
4.7.2 Poor Surface Finish and Improper Tool Material/Hardness.......261 * {) z- Q& w& @ j 4.7.3 Coolant Hole Location and Size.................................................263 7 I) ^1 ^0 }: c, f4 J4.8 Tool Geometry ......................................................................................267 * b8 K e( N7 P5 o) z' T/ P 4.8.1 Straight-flute and Twist Drills Particularities............................269 ! p, O' ]+ x, `8 S2 p
4.8.2 Geometry of the Typical Drill Point ..........................................270 5 J! o6 B! ~' _5 C& k4 o 4.8.3 Rake Angle.................................................................................272 $ I- F" H$ k# a, F+ O# `( N
4.8.4 Inclination Angle .........................................................................280 . b& M; n$ x8 o7 q& ~ 4.8.5 Flank Angle................................................................................281 4 ~5 X, C3 N: k" x, p, i. I4 N 4.8.6 Geometry of a Cutting Edge Located at an Angle 8 _) W9 J& t3 ]! W4 L4 u
to the y0-plane ............................................................................292 T8 m I: m' r7 S! h& k. v" u
4.8.7 Chisel Edge ................................................................................295 & L7 p9 Z% t7 T 4.8.8 Drill Flank is Formed by Two Planes: Generalization...............306 8 z- ]: y: j& P8 r 4.8.9 Drill Flank Angle Formed by Three Planes ...............................310 2 x$ P- n& L8 n- Q
4.8.10 Flank Formed by Quadratic Surfaces.........................................313 0 N1 K8 b7 f/ x4.9 Load Over the Drill Cutting Edge .........................................................324 1 Z4 ]3 U9 Q" X# |
4.9.1 Uncut Chip Thickness in Drilling ..............................................325 7 n7 ?/ d4 w. w4 j. S* D
4.9.2 Load Distribution Over the Cutting Edge ..................................327 ' ^. Y1 Y) e* i" s7 n$ z4.10 Drills with Curved and Segmented Cutting Edges ................................328 / r! P7 _( o) H* |7 \5 G
4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329 ' x- ?8 [: K7 `2 g: W5 b) B& a9 Q: Z 4.10.2 Rake Angle.................................................................................332 + H/ Y4 w7 ?0 \3 D2 g4 f9 FReferences......................................................................................................337 ( [- R8 `; y" Z$ f& J- W5 Deep-hole Tools............................................................................................341 # u. r( w3 j7 X" x2 T4 b2 ?5.1 Introduction ...........................................................................................341 % B/ Y( T. U# a" D" l/ S* W
5.2 Generic Classification of Deep-hole Machining Operations.................343 2 J4 r1 [+ L% c1 ?+ o c5.3 What Does ‘Self-piloting Tool’ Mean? .................................................345 : ~. v f5 {6 d, W, S$ b
5.3.1 Force Balance in Self-piloting Tools..........................................345 4 `! h' @1 H, n4 k4 \6 Q% Z5.4 Three Basic Kinematic Schemes of Drilling .........................................350 : X7 W6 i! M1 I& V+ T; G4 w
5.4.1 Gundrill Rotates and the Workpiece is Stationary .....................351 ( H4 L. v- L7 ? 5.4.2 Workpiece Rotates and the Gundrill is Stationary .....................352 - M1 I1 I5 u# ^/ S1 O8 I1 B. X 5.4.3 Counterrotation ..........................................................................352 4 |; r& D% ^8 u- P- n
5.5 System Approach ..................................................................................353 - @- I" [+ C0 v- H: Y; C" M
5.5.1 Handling Tool Failure ................................................................353 + [- U ]. |& p: Q2 C; w% i s 5.5.2 System Considerations ...............................................................354 9 q4 M' N0 q# L; l
5.6 Gundrills................................................................................................362 0 r3 J0 ^; B6 y" u 5.6.1 Basic Geometry..........................................................................362 ; S: p! W% Q6 E0 p; w' x- I 5.6.2 Rake Surface ..............................................................................365 + | q6 i9 R, F; Q m+ A2 A
5.6.3 Geometry of Major Flanks .........................................................370 0 I: }$ h4 b* }' b6 l7 x 5.6.4 System Considerations in Gundrill Design ................................390 5 g+ f$ h8 ^4 {; Y4 t5.6.5 Examplification of Significance of the High MWF Pressure " G" F' o2 a8 `: s/ W in the Bottom Clearance Space ..................................................423 ) p i N9 o5 k& E, Q 5.6.6 Example of Experimental Study ................................................425 ! K/ r( L$ M2 x' o" f% n 5.6.7 Optimization of Tool Geometry.................................................439 2 r3 K2 k; ?" l4 t. P" R9 h/ w& rReferences......................................................................................................440 # [: X" o N) X% ]Appendix A . ]4 h: {7 D* ~5 d0 o6 c. kBasic Kinematics of Turning and Drilling.......................................................443 5 Y) X8 p' N) g# A" y1 s _A.1 Introduction ...........................................................................................443 / _ y4 V/ [! |A.2 Turning and Boring ...............................................................................444 & Q* F, x* u' K" Z
A.2.1 Basic Motions in Turning...........................................................444 ! \- W" b: B2 F( X* O H" b A.2.2 Cutting Speed in Turning and Boring ........................................448 # j8 o# n/ l" T3 [
A.2.3 Feed and Feed Rate ....................................................................448 5 F( Z: V3 y, m3 Q+ [8 Y2 W A.2.4 Depth of Cut...............................................................................449 ( p" X7 N3 G* H, T
A.2.5 Material Removal Rate ..............................................................449 $ X) O! y, x8 t9 S( K
A.2.6 Resultant Motion........................................................................450 . C! L8 @2 m3 I: U& ^8 @; t- ?+ X
A.3 Drilling and Reaming ............................................................................450 $ S+ |4 V0 b, f; A9 K4 U5 e/ \0 X A.3.1 Basic Motions in Drilling...........................................................450 + H+ I2 ^$ _9 y$ { A.3.2 Machining Regime.....................................................................451 2 ]/ V+ E( ]$ ~3 w! V6 O' mA.4 Cutting Force and Power .......................................................................453 9 J' \, E3 `; q% V
A.4.1 Force System in Metal Cutting...................................................453 ' g9 Z$ M- W$ ~5 O/ ~5 Z
A.4.2 Cutting Power ............................................................................454 & F; |2 D9 p. S1 ^! Q. F3 F A.4.3 Practical Assessment of the Cutting Force.................................455 * x$ J; a* B8 _% h' P2 b
References......................................................................................................461 2 {0 C' p4 n2 G' {7 W7 ]Appendix B 3 M' Z. Y* ?7 |# q5 V7 s
ANSI and ISO Turning Indexable Inserts and Holders.................................463 ' h5 D9 I1 D( B2 ]& p( y0 f! }/ D
B.1 Indexable Inserts ...................................................................................463 . Q2 v" m$ M" r9 y: O# b
B.1.1 ANSI Code .................................................................................464 * m( K+ s4 w a B.1.2 ISO Code....................................................................................471 # w- J" N1 ~* ^4 u B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491 & e) A I0 t. g; ?4 ]9 i1 L B.2.1 Symbol for the Method of Holding Horizontally Mounted 9 l8 U: K/ R" ]" x Y+ v; V
Insert – Reference Position (1) ..............................................................492 ( Y! _7 }) o3 U7 m( ^( u9 l
B.2.2 Symbol for Insert Shape – Reference Position (2) .....................493 " z: X2 h3 [7 C7 W- G ~
B.2.3 Symbol for Tool Style – Reference Position (3) ........................493 3 E- n$ M$ ^# N8 u2 u1 R
B.2.4 Letter Symbol Identifying Insert Normal Clearance – . }5 R: E; D( Y& i$ d j Reference Position (4)................................................................494 , C$ Z9 v6 ~* D9 F( u6 @' P
B.2.5 Symbol for Tool Hand – Reference position (5) ........................494 9 x8 e$ u( f* e. T0 x6 ] B.2.6 Symbol for Tool Height (Shank Height of Tool Holders 1 k7 k+ r$ Y4 i+ M. V+ J and Height of Cutting Edge) - Reference Position (6) ...............494 % W5 i. G% k2 ^% |, K- l
B.2.7 Number Symbol Identifying Tool Holder Shank Width – 4 V1 x5 v6 ~6 s* G2 s$ h
Reference Position (7)................................................................495 1 I: t$ p5 L6 J2 H [; F
B.2.8 Number Symbol Identifying Tool Length – ' _5 v0 Y. ?$ i/ V! n+ x4 w Reference Position (8)................................................................495 7 B6 b+ t; {" j) p& }
B.2.9 Letter Symbol Identifying Indexable Insert Size – . Q3 K6 H j" x2 g5 ]9 h8 X: |4 c+ `
Reference Position (9)................................................................497 2 L! s2 D- f. z6 Q! A" a' K f7 ~) f
Appendix C . g! I+ E9 S( \5 F
Basics of Vector Analysis ..................................................................................499 ; U' C8 G! Q% w! N& v% O: NC.1 Vectors and Scalars ...............................................................................499 / s. I4 h6 d7 `6 T& n
C.2 Definition and Representation...............................................................500 0 {. @; O% U3 |2 ?* m C.2.1 Definitions..................................................................................500 0 C; H; [ o1 c C.2.2 Basic Vector Operations ............................................................503 - J: L; R7 Y- F$ vC.3 Application Conveniences.....................................................................509 ! P3 g8 K' S% I0 E( s0 u& K" xC.4 Rotation: Linear and Angular Velocities...............................................511 : |0 b* F6 z5 N+ v C.4.1 Planar Linear and Angular Velocities ........................................511 ' r! k7 j* _0 p5 l( O: {
C.4.2 Rotation: The Angular Velocity Vector .....................................515 9 \7 j; ]0 h: P1 ^5 {# xReferences ...........................................................................................................518 ( ~: }. n; B4 g$ j, YAppendix D ; ~/ S6 V1 W7 q$ w+ R
Hydraulic Losses: Basics and Gundrill Specifics............................................519 ( D$ Q; Q, W+ Y, Z0 q+ A. V- a$ ZD.1 Hydraulic Pressure Losses – General ....................................................519 * t( K0 ~' j# w D.1.1 Major Losses: Friction Factor ....................................................520 2 P5 Y5 h2 J9 \
D.1.2 Minor Losses (Losses Due to Form Resistance) ........................521 7 ]7 v f3 V+ s9 D( c% c2 O D.2 Concept of the Critical MWF Velocity and Flow Rate .........................521 : {& d% g4 _* L; Z6 Q; E5 E D.2.1 MWF Flow Rate Needed for Reliable Chip Transportation.......522 / Z# J6 }7 g5 S
D.2.3 Example D.1...............................................................................527 + ^2 ~. t, o: ` _ `+ Q/ _, W0 tD.3 Inlet MWF pressure...............................................................................528 6 n" ~. x2 K. B; y% b
D.4 Analysis of Hydraulic Resistances ........................................................532 % g5 R8 P' G. k+ L, r1 Z1 I! B( a D.4.1 Analysis of Hydraulic Resistances Over Which the Designer 2 T- y/ T! S r! g$ h6 f4 V Has No or Little Control ............................................................532 ! A' {6 K% }# ~) l D.4.2 Variable Resistances Over Which the Designer Has Control ....535 ) j9 n8 ]: c' d5 v% `* h3 E k
D.5 Practical Implementation in the Drill Design ........................................539 " o3 O8 V$ b ]/ T# h: s# ?
References ..........................................................................................................543 # O( @- Z! E+ g2 _2 Z3 ~+ LAppendix E 1 O/ I7 c' C) ~Requirements and Examples of Cutting Tool Drawings................................545 4 V1 ]/ b9 O7 O L8 h# M# bE.1 Introduction ...........................................................................................545 $ d9 o, A+ g* ~
E.2 Tool Drawings – the Existent Practice ..................................................546 - g$ d2 h9 s6 [" eE.3 Tool Drawing Requrements ..................................................................548 3 j$ @3 D1 O' S/ IE.4 Examples of Tool Drawing ...................................................................553 ; ^+ w+ X* }1 s: B* s4 q2 |References ..........................................................................................................559 & M% U; _% [3 x* F0 V
Index…………………………………………………………………………….561 : \# A, V* w6 ~/ h
+ Q4 P4 R4 U% ?3 T, a