標題: Geometry_of_Single_point_Turning_Tools_and_Drills [打印本頁] 作者: 機器鼠 時間: 2011-6-23 22:58 標題: Geometry_of_Single_point_Turning_Tools_and_Drills 本帖最后由 機器鼠 于 2011-6-23 23:18 編輯 8 U3 e; `9 U K0 C6 x9 e, I - t: ^# _7 U1 y a4 P3 cGeometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf & S! c/ h( Y8 j+ n有要的嗎,?刀具,,細節(jié),,很到位,。英文版,。% k8 F) g; n6 y+ b) |3 d
國內無人這么細研究的吧,?作者: 狙擊手 時間: 2011-6-24 19:17
說什么的,?作者: 機器鼠 時間: 2011-6-24 22:02
Although almost any book and/or text on metal cutting, cutting tool design, and # C. Q- [0 X1 A& l1 J
manufacturing process discusses to a certain extent the tool geometry, the body of $ ~" [9 b3 L' i7 ~* V2 Dknowledge on the subject is scattered and confusing. Moreover, there is no clear 4 Q1 E- M: h+ x# ~: zobjective(s) set in the selection of the tool geometry parameters so that an answer 1 A: ^7 | Q# ]7 [5 {" _to a simple question about optimal tool geometry cannot be found in the literature 0 F- ~2 v* M. w4 A! pon the subject. This is because a criterion (criteria) of optimization is not clear, on & g5 q: t5 S e" `* ]
one hand, and because the role of cutting tool geometry in machining process % Z: g; g1 Z Voptimization has never been studied systematically, on the other. As a result, many / T4 p9 U8 Q% npractical tool/process designers are forced to use extremely vague ranges of tool 8 L1 d. r- x e+ ^: E
geometry parameters provided by handbooks. Being at least 20+ years outdated, 1 |# T3 u1 D2 I! |; G8 f
these data do not account for any particularities of a machining operation including : [ \+ W9 X( f& m2 t) ma particular grade of tool material, the condition of the machine used, the cutting - W3 y; Z0 G& O6 y
fluid, properties and metallurgical condition of the work material, requirements to * D5 J3 J1 _! m
the integrity of the machined surface, etc. . g7 M" T' d" J9 M5 O' G* C5 s y8 q( P9 JUnfortunately, while today's professionals, practitioners, and students are t# D2 X K8 A! k" g/ w2 Cinterested in cutting tool geometry, they are doomed to struggle with the confusing 9 W, Z% ]4 N$ k3 H7 bterminology. When one does not know what the words (terms) mean, it is easy to 4 \% N3 l* h3 r( A N7 l* Oslip into thinking that the matter is difficult, when actually the ideas are simple, # q6 p) }4 E& l& t4 _
easy to grasp, and fun to consider. It is the terms that get in the way, that stand as a ( Q7 ?$ }" Q8 g
wall between many practitioners and science. This books attempts to turn those 0 ?. P* K" j' {- O% K+ }walls into windows, so that readers can peer in and join in the fun of proper tool 3 j* g( ?; y. l) X; A9 ?design. % M' e$ t) S+ C$ L, r% DSo, why am I writing this book? There are a few reasons, but first and foremost, 3 |3 t; {4 |$ O3 V9 y9 ?4 fbecause I am a true believer in what we call technical literacy. I believe that # P) m+ ^2 ~( C9 o) X! z8 ?
everyone involved in the metal cutting business should understand the essence and ; u( d9 J4 b' l" z5 e
importance of cutting tool geometry. In my opinion, this understanding is key to i. {4 F8 t0 U5 @: [' M5 x" y/ L
improving efficiency of practically all machining operations. For the first time, this : ^& _+ M3 Z$ l3 o8 z8 p% U; S
book presents and explains the direct correlations between tool geometry and tool $ e, ?. d1 L) J! ?& T
performance. The second reason is that I felt that there is no comprehensive book 1 t. T4 A' Q& d7 v
on the subject so professionals, practitioners, and students do not have a text from 9 [1 I, l! B3 ^which to learn more on the subject and thus appreciate the real value of tool / O- u9 O0 l: P1 L% o5 ?" q2 d# Zgeometry. Finally, I wanted to share the key elements of tool geometry that I felt 7 x: S' c+ ]8 W% b( X7 _/ p% u) B
were not broadly understood and thus used in the tool design practice and in 6 Y* G3 c% i% t) z1 l# E( Yoptimization of machining operations in industry. Moreover, being directly 2 m# R% O {" r) H5 t) y1 {
involved in the launch of many modern manufacturing facilities equipped with % o6 t" Z- I1 x% Y2 b4 v5 _7 _# R# m
state-of-the-art high-precision machines, I found that the cutting tool industry is not * X* O( O5 u1 {: D( }; B' wready to meet the challenge of modern metal cutting applications. One of the key * Z; v2 |) G0 W: d. g! a6 Sissues is the definite lack of understanding of the basics of tool geometry of # v' ?; J* q/ _& A, x6 Q4 }
standard and application-specific tools. ; p: g0 B: H9 v% ]% i5 [- EThe lack of information on cutting tool geometry and its influence on the * j' \, V/ f0 n4 H8 j- U/ \
outcome of machining operations can be explained as follows. Many great findings ) j) k' q0 H+ e C/ p: Ion tool geometry were published a long time ago when neither CNC grinding 9 W# s0 ?9 \5 Y d! Lmachines capable of reproducing any kind of tool geometry were available nor ' \- i. s$ Y* q& _! Jwere computers to calculate parameters of such geometry (using numerical 1 {+ l" K6 q8 ]9 J% L& gmethods) common. Manual grinding using standard 2- and 3-axis simple grinding y1 X& n2 `" k! V3 P
features was common so the major requirement for tool geometry was the simpler . a+ U8 [, P9 |5 H+ m8 cthe better. Moreover, old, insufficiently rigid machines, aged tool holders and part + v* U1 G" \# Q, _fixtures, and poor metal working fluid (MWF) selection and maintenance levered - q7 ?# {! s/ r/ X& ~any advancement in tool geometry as its influence could not be distinguished under ; f/ c5 C p H6 {
these conditions. Besides, a great scatter in the properties of tool materials in the . C6 X: {5 J2 a' Npast did not allow distinguishing of the true influence of tool geometry. As a result, . Z: m0 S$ ^) Y9 ^) @4 }$ x" H3 L
studies on tool geometry were reduced to theoretical considerations of features of ; h. g5 ?/ U6 C G' k% t# U( Vtwist drills and some gear manufacturing tools such as hobs, shaving cutters, 5 d: Y$ L& F6 Z& n. z7 Y
shapers, etc. % M9 P, w/ _ C% Q/ Q# PGradually, once mighty chapters on tool geometry in metal cutting and tool ) N8 ~/ }. i9 |. d# {
design books were reduced to sections of few pages where no correlation between ( k: V H% |8 a% stool geometry and tool performance is normally considered. What is left is a * M* ?$ W" r) `5 r$ K
general perception that the so-called “positive geometry” is somehow better than 9 O/ E8 [/ a1 |- s# \/ N8 f“negative geometry.” As such, there is no quantitative translation of the word : Y: A6 X& \( t; U+ D“better” into the language of technical data although a great number of articles ! V6 [. \# G- l, w/ z S
written in many professional magazines discuss the qualitative advantages of 3 S/ o% ]3 d1 {- k% ]
“positive geometry.” For example, one popular manufacturing magazine article / D5 b0 O+ p7 c' u( W) M) }read “Negative rake tools have a much stronger leading edge and tend to push 3 j* N: F7 s& U' C9 w- s
against the workpiece in the direction of the cutter feed. This geometry is less free 6 b3 a; z" ?0 J0 X3 V ^cutting than positive rakes and so consumes more horsepower to cut.” Reading & r% {: I _7 k5 T } dthese articles one may wonder why cutting tool manufacturers did not switch their + r( K% k: ]* C9 V r
tool designs completely to this mysterious “positive geometry” or why some of / k5 R# j' m; A9 [
them still investigate and promote negative geometry. / W, ^# i' N# X; M. gDuring recent decades, the metalworking industry underwent several important , y1 Q6 { w+ C) ~changes that should bring cutting tool geometry into the forefront of tool design ( b5 f( ~: T1 _( \' zand implementation: 作者: 機器鼠 時間: 2011-6-24 22:03
1 What Does It Mean “Metal Cutting”? ...........................................................1 ; o1 J5 I- U9 \* d$ u6 [% a
1.1 Introduction ...............................................................................................1 ! U! A E: h7 ^3 a
1.2 Known Results and Comparison with Other Forming Processes ..............2 5 y+ q; g- J5 ~& R o/ t: G
1.2.1 Single-shear Plane Model of Metal Cutting ...................................2 * |7 J" h4 Y W9 H& c. ]
1.2.2 Metal Cutting vs. Other Closely Related Manufacturing $ u5 R1 M5 W5 P
Operations .................................................................................................5 6 v7 S9 m1 G( x, u
1.3 What Went Wrong in the Representation of Metal Cutting?...................22 9 c$ Y6 A* A: U( l, U/ p
1.3.1 Force Diagram..............................................................................23 3 {+ `* d4 l5 l' D' D+ N8 o 1.3.2 Resistance of the Work Material in Cutting.................................25 . s2 J' _: ]' ]$ C9 [+ X* ~) ? 1.3.3 Comparison of the Known Solutions for the Single-shear 2 v+ Z% U" p) @+ v n* ~
Plane Model with Experimental Results .................................................27 ( P+ C9 o/ o r& h/ r- s
1.4 What is Metal Cutting?............................................................................28 & _/ D. U5 G+ A6 ^- z 1.4.1 Importance to Know the Right Answer........................................28 8 N4 m" D8 w( ^0 v4 K! P8 F 1.4.2 Definition .....................................................................................28 ; j: E0 Q8 Z" f6 |
1.4.3 Relevance to the Cutting Tool Geometry.....................................29 4 G: H+ a( j: Z5 t3 E
1.5 Fundamental Laws of Metal Cutting.......................................................32 % u1 @7 ?1 I- R2 w2 Y6 K2 _
1.5.1 Optimal Cutting Temperature – Makarow’s Law........................32 3 D" |2 n' g. L+ } 1.5.2 Deformation Law.........................................................................35 / p4 W& T) ?$ t. {6 Z/ }3 ^6 O! E9 M
References........................................................................................................50 6 D2 g* |: g, N/ E2 l
2 Basic Definitions and Cutting Tool Geometry, , o+ }' K: b! M" O) m' a. `1 r
Single Point Cutting Tools ............................................................................55 - d& T# E$ N8 H- H$ k" Q& L P
2.1 Basic Terms and Definitions ...................................................................55 . I: e/ M/ w; i 2.1.1 Workpiece Surfaces.......................................................................57 ; D" L2 b( F0 ~ 2.1.2 Tool Surfaces and Elements ..........................................................57 ( V8 j5 D8 Z; \ d7 X; v- |4 @
2.1.3 Tool and Workpiece Motions.......................................................57 5 g. f8 Q3 U7 h1 Q 2.1.4 Types of Cutting ............................................................................58 * s* d* y& Q1 K: j o2 q2 j% b! o
2.2 Cutting Tool Geometry Standards...........................................................60 & ]) A9 [; v8 r( I, {4 S
2.3 Systems of Consideration of Tool Geometry ..........................................61 , h8 w( o3 e0 k8 _
2.4. Tool-in-hand System (T-hand-S) .......................................................647 v" n, k! B2 h- W' y
2.4.1 Tool-in-hand Coordinate System.................................................64 5 a; C4 w. A, q9 A2 `' F E
2.4.2 References Planes ........................................................................66 * {: X N) h8 R6 P/ R& Y) w
2.4.3 Tool Angles..................................................................................68 , _5 D& O' l$ P) [# ]0 a6 H0 y 2.4.4 Geometry of Cutting Tools with Indexable Inserts ......................74 1 c. T; e+ d0 k1 S$ d
2.5 Tool-in-machine System (T-mach-S)......................................................84 , I# J* {, t6 X) b' d. N
2.5.1 Angles ..........................................................................................84 ' z, g; V! @& }$ C' W o( ]' g
2.5.2 Example 2.3 .................................................................................88 . z" b* K1 n1 t% `2.6 Tool-in-use System (T-use-S) .................................................................90 9 z. [+ y w/ F8 S
2.6.1 Reference Planes ..........................................................................91 # T/ S5 [9 S( k. b6 M 2.6.2 The Concept .................................................................................92 7 @, b4 U) @+ G( y: l9 o4 |
2.6.3 Modification of the T-hand-S Cool Geometry .............................92 : m( n8 a) c0 v" g( C( D- R1 m: i
2.6.4 Kinematic Angles.........................................................................98 $ S6 y+ e6 y5 `: u1 j- w' J 2.6.5 Example 2.4 ...............................................................................100 ) ]& Z. i. h O3 N
2.7 Avalanched Representation of the Cutting Tool Geometry . V( P* |% C- X$ I. R- F+ }9 b
in T-hand-S............................................................................................102 ) K' b3 C0 _4 X' n
2.7.1 Basic Tool Geometry .................................................................102 0 l/ @( S# N2 Q2 ~& Q0 f% g( D2.7.2 Determination of Cutting Tool Angles Relation % m6 g5 m+ H( \$ \ for a Wiper Cutting Insert ..........................................................108 1 z6 g$ M1 V* r 2.7.3 Determination of Cutting Tool Angles ; Z1 @) ]$ x% [ for a Single-point Tool ...............................................................110 N5 p% g+ ?3 U7 H
2.7.4 Flank Angles of a Dovetail Forming Tool .................................117 6 U7 J& s) @9 Z2 p 2.7.5 Summation of Several Motions..................................................119 + d. e4 e* \2 Q; u% @3 E1 m Z0 D( _References......................................................................................................125 ( T ~5 m# i# `( ]. a$ f+ e3 Fundamentals of the Selection of Cutting Tool Geometry Parameters...127 * p9 E0 @3 {' X3 C
3.1 Introduction ...........................................................................................127 ) e4 g5 Z( N/ L: z- Y( s
3.2 General Considerations in the Selection of Parameters # a% W7 l! d1 H- m! @0 \
of Cutting Tool Geometry .....................................................................129 : l( M4 S/ |" V 3.2.1 Known Results .............................................................................129 ! [/ ^& ]( [4 u* o2 _) _5 g+ Q' I 3.2.2 Ideal Tool Geometry and Constrains............................................130 7 D! h8 a2 H, i4 R9 F
3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132 7 ], m" N6 M' h3 B( W7 p5 e3.3 Tool Cutting Edge Angles .....................................................................132 3 s# w9 d! b# L! @7 z! ^ U 3.3.1 General Consideration................................................................132 # F* P. K! t _2 ] 3.3.2 Uncut ChipT in Non-free Cutting ..............................................134 : O$ l, o1 i- |& l3 b. X
3.3.3 Influence on the Surface Finish..................................................142 , A; @; }3 k( _3 |7 [1 o 3.3.4 Tools with κr > 90°.....................................................................144 2 [ e# L! N: m/ \$ J. ^ I
3.3.5 Tool Minor Cutting Edge Angle ................................................147 + b% s2 }6 Y( X7 P3.4. Edge Preparation ...................................................................................161 6 O4 r! s1 C2 E8 P! W5 w
3.4.1 General .......................................................................................161 ' |$ ]$ h0 v& t9 ]
3.4.2 Shape and Extent........................................................................163 $ C7 E9 C8 [6 I% V# W 3.4.3 Limitations .................................................................................163 , p7 v1 {; z8 U8 Y
3.4.4 What Edge Preparation Actually Does.......................................169 / `$ B( D. i: m& s3.5 Rake Angle............................................................................................171 ) |" w4 G0 T) u1 w2 u/ A* F 3.5.1 Introduction................................................................................171 9 Y. B/ H5 J& @
3.5.2 Influence on Plastic Deformation and Generazliations ..............175 : e0 D8 B7 K" _' S. t
3.5.3 Effective Rake Angle .................................................................183 9 Y+ u* C& X/ |) J9 {
3.5.4 Conditions for Using High Rake Angles....................................189 4 ]9 e: O6 D* ^% N6 N' {# L. o3.6 Flank Angle ...........................................................................................191 2 U% D- H7 a4 y/ c; f" w5 a. ^
3.7 Inclination Angle...................................................................................193 & n& j: _$ y( i o
3.7.1 Turning with Rotary Tools.........................................................195 ' p4 Y- Y/ }$ \$ C" y# D
3.7.2 Helical Treading Taps and Broaches..........................................197 j' u5 ]0 U7 `. H/ z$ H
3.7.3 Milling Tools..............................................................................198 & q( g- i3 h) L; g3 Z! _References......................................................................................................201 5 A% H- x0 {6 o8 X. l4 Straight Flute and Twist Drills ...................................................................205 * @& l5 H. e' d# M) c, @
4.1 Introduction ...........................................................................................205 9 c( v. e: N( X8 Z$ O: F4.2 Classification.........................................................................................206 , P `5 I1 d9 {5 E2 I6 ~+ `; k4.3 Basic Terms...........................................................................................208 ( d, }/ D7 D. r* o- k1 @# Y4.4 System Approach ..................................................................................211 2 y. \8 s0 B' b7 K6 J5 f6 x1 o 4.4.1 System Objective .......................................................................212 3 b G4 e7 {6 m6 o 4.4.2 Understanding the Drilling System............................................212 , a0 X, ?9 P% U A5 @3 k
4.4.3. Understanding the Tool..............................................................212 , Z/ W) v, I8 Y$ k4.5. Force System Constrains on the Drill Penetration Rate ........................213 8 E- Q' _/ _, k, K8 U 4.5.1 Force-balance Problem in Conventional Drills ..........................213 . e' \1 @ ~0 H) q" Y 4.5.2 Constrains on the Drill Penetration Rate....................................218 * V2 L0 t! Y, L" }- S! X
4.5.3 Drilling Torque ..........................................................................219 # |5 c7 T: }, c# ]: l. h2 p 4.5.4 Axial Force.................................................................................220 8 }* M9 c" p: h$ i& ]3 c. c
4.5.5 Axial Force (Thrust)-torque Coupling .......................................221 % @# Y- Q/ w5 @8 d4.6 Drill Point ..............................................................................................223 0 M, h& B; t/ c! H9 | X6 p 4.6.1 Basic Classifications ..................................................................223 " a/ l% i( J5 E% F8 n 4.6.2 Tool Geometry Measures to Increase the Allowable 2 H/ M. w+ p: {% g
Penetration Rate ....................................................................................224 - S/ G& d/ T x& D
4.7 Common Design and Manufacturing Flaws..........................................259 9 i3 x' C. z5 a1 a: d
4.7.1 Web Eccentricity/ Lip Index Error.............................................260 6 K( o4 S6 @( L0 ]' `4 s
4.7.2 Poor Surface Finish and Improper Tool Material/Hardness.......261 2 f. @* W( B( E
4.7.3 Coolant Hole Location and Size.................................................263 3 d9 F- l, Z+ }- F4.8 Tool Geometry ......................................................................................267 4 j Z2 Z: t' U# h
4.8.1 Straight-flute and Twist Drills Particularities............................269 5 j* Z. w' ^/ X' z 4.8.2 Geometry of the Typical Drill Point ..........................................270 ' |) h! L9 h5 |9 n4 c 4.8.3 Rake Angle.................................................................................272 / }+ K$ w) n: p" n+ `
4.8.4 Inclination Angle .........................................................................280 $ I& i; g/ F. E2 e8 R7 ^) |8 w6 m 4.8.5 Flank Angle................................................................................281 # f1 E" ?6 ]+ @ 4.8.6 Geometry of a Cutting Edge Located at an Angle $ Z) C# O6 p4 C1 f4 I. q L
to the y0-plane ............................................................................292 ) [ ^9 }: U D) }) h 4.8.7 Chisel Edge ................................................................................295 ! e7 ?' ?0 P1 J+ A 4.8.8 Drill Flank is Formed by Two Planes: Generalization...............306 4 K; G+ C7 ]+ E1 {$ I; q: C 4.8.9 Drill Flank Angle Formed by Three Planes ...............................310 P; L: g2 N* Z. I* j- @; r4 @ 4.8.10 Flank Formed by Quadratic Surfaces.........................................313 4 L( D0 {) V7 [( G( M
4.9 Load Over the Drill Cutting Edge .........................................................324 2 M1 I. \5 L/ x. |! m7 y* n
4.9.1 Uncut Chip Thickness in Drilling ..............................................325 4 E0 o* Y X9 n1 D
4.9.2 Load Distribution Over the Cutting Edge ..................................327 ) X2 ?9 P7 G Y: F. C) S: r
4.10 Drills with Curved and Segmented Cutting Edges ................................328 ' c4 Z# R2 |) ? v1 h y1 j 4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329 & c( P. e: y5 I' \ 4.10.2 Rake Angle.................................................................................332 $ b7 c. R: y# q5 UReferences......................................................................................................337 : _# U( P# G3 d3 t8 X" z5 [5 Deep-hole Tools............................................................................................341 3 t. t; `, ]( O% b4 C2 i
5.1 Introduction ...........................................................................................341 + l% ~# ^; } j5 @' q, @1 l
5.2 Generic Classification of Deep-hole Machining Operations.................343 * I4 K! ?/ L* t7 y
5.3 What Does ‘Self-piloting Tool’ Mean? .................................................345 J# q$ D3 d( N7 y: |( S0 H; H2 a 5.3.1 Force Balance in Self-piloting Tools..........................................345 0 ], d6 Q: I: a( f B" S/ q+ [
5.4 Three Basic Kinematic Schemes of Drilling .........................................350 ! ?. ?1 i/ f! e) ]/ w' x 5.4.1 Gundrill Rotates and the Workpiece is Stationary .....................351 & b# s' a; P4 n8 t0 {( I
5.4.2 Workpiece Rotates and the Gundrill is Stationary .....................352 ' o0 \4 n- [, t ]0 l: p7 e' u$ U
5.4.3 Counterrotation ..........................................................................352 & J5 j* G% \( {! {+ D! [5.5 System Approach ..................................................................................353 ' `1 O. x* @/ r& q/ t" ^
5.5.1 Handling Tool Failure ................................................................353 / ^/ p3 p. S. t3 F+ X
5.5.2 System Considerations ...............................................................354 , t8 k8 d" H7 c0 d8 s& B6 V" X/ l
5.6 Gundrills................................................................................................362 * ]$ c. L( t% ]- v! d+ U 5.6.1 Basic Geometry..........................................................................362 / Q- Q ]0 }/ p, i
5.6.2 Rake Surface ..............................................................................365 $ m4 i% f8 a. M& E$ Q
5.6.3 Geometry of Major Flanks .........................................................370 * @/ M9 R% `, h! `
5.6.4 System Considerations in Gundrill Design ................................390 6 ]1 M4 n. W) q* y$ b/ V
5.6.5 Examplification of Significance of the High MWF Pressure 4 t1 d# j, E; O: E- q6 @ in the Bottom Clearance Space ..................................................423 2 r# r3 i7 Y+ z. ^6 S2 _2 `
5.6.6 Example of Experimental Study ................................................425 2 T4 p z/ k: }" b& i; A1 c
5.6.7 Optimization of Tool Geometry.................................................439 * s" T9 \! V6 P% h+ I# UReferences......................................................................................................440 ! r$ u" t; B# R" [5 y: m8 zAppendix A % }5 f/ L4 P+ I( K
Basic Kinematics of Turning and Drilling.......................................................443 + H! P: s' I- Y) | j/ oA.1 Introduction ...........................................................................................443 : }9 i! H1 L2 q; n! p
A.2 Turning and Boring ...............................................................................444 ( u* J* |( f4 `5 m6 Q# z/ E6 M# `
A.2.1 Basic Motions in Turning...........................................................444 1 e$ j$ @3 E& n8 n$ |. y A.2.2 Cutting Speed in Turning and Boring ........................................448 4 V7 k4 m& A. W- M) r/ A A.2.3 Feed and Feed Rate ....................................................................448 5 F) O K. [" C: Y9 h" [
A.2.4 Depth of Cut...............................................................................449 4 n9 n4 k! Y3 u k9 q; b A.2.5 Material Removal Rate ..............................................................449 ! N2 A" d3 o* Q' B* t A.2.6 Resultant Motion........................................................................450 & \: Y5 f& ~" E/ rA.3 Drilling and Reaming ............................................................................450 . b4 {/ N$ l* b
A.3.1 Basic Motions in Drilling...........................................................450 + R( N1 }: \. t; @. G A.3.2 Machining Regime.....................................................................451 5 E: Z4 B+ s8 F6 D
A.4 Cutting Force and Power .......................................................................453 1 i+ ]( `# T# E+ d
A.4.1 Force System in Metal Cutting...................................................453 ' i( R3 U4 M ]! ^" G% O$ v3 J
A.4.2 Cutting Power ............................................................................454 + K2 p' t _9 K A.4.3 Practical Assessment of the Cutting Force.................................455 9 _# X! m5 {+ P. X
References......................................................................................................461 % ~! I2 [% _; D0 x; `" s w1 O
Appendix B 6 G& _8 O ]1 m" @! s) q6 Z% q6 M
ANSI and ISO Turning Indexable Inserts and Holders.................................463 7 e8 V* t0 O) I4 r
B.1 Indexable Inserts ...................................................................................463 . a3 C/ u3 [8 E% N% @& I8 a B.1.1 ANSI Code .................................................................................464 " h& P6 G( `$ ]: b" K# O7 y
B.1.2 ISO Code....................................................................................471 3 N$ `2 {2 _# B9 C, m. F. B
B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491 * H2 J- ^: w( w7 I B.2.1 Symbol for the Method of Holding Horizontally Mounted 4 @, D" [6 s# b1 ]' O0 c Insert – Reference Position (1) ..............................................................492 % Z0 U1 w5 S, l+ j; d" Z B.2.2 Symbol for Insert Shape – Reference Position (2) .....................493 S4 o2 q/ `& d# g$ ]0 H+ O
B.2.3 Symbol for Tool Style – Reference Position (3) ........................493 8 D' I& ]; E, z( o
B.2.4 Letter Symbol Identifying Insert Normal Clearance – ' k- |7 t& w+ j$ T
Reference Position (4)................................................................494 . u E0 c3 ?, {+ C: @8 v
B.2.5 Symbol for Tool Hand – Reference position (5) ........................494 5 o: v- |# R6 n( V" y( l
B.2.6 Symbol for Tool Height (Shank Height of Tool Holders ( H/ F8 U" W" q# U. G% r/ R. H/ x and Height of Cutting Edge) - Reference Position (6) ...............494 ) i5 D$ a2 t; L( D: ]0 A
B.2.7 Number Symbol Identifying Tool Holder Shank Width – 3 E4 O/ Q( }; C9 T% Q, W Reference Position (7)................................................................495 + u8 u: X; o5 P2 R4 L8 P B.2.8 Number Symbol Identifying Tool Length – 3 Y) I( C" d8 I S
Reference Position (8)................................................................495 7 Q3 z0 o, ?, n1 X- w
B.2.9 Letter Symbol Identifying Indexable Insert Size – & g2 _7 z( `2 |& R( _; w7 J6 f, m
Reference Position (9)................................................................497 & f9 g8 x% @) l' h$ V" V; ?Appendix C . _9 w' ^) X) ?) E5 O# q
Basics of Vector Analysis ..................................................................................499 9 I# |/ \* Z+ s
C.1 Vectors and Scalars ...............................................................................499 ! x4 u# T/ [" e1 o* p
C.2 Definition and Representation...............................................................500 . o0 u& M( p( Z C.2.1 Definitions..................................................................................500 & @* z% h3 k6 L/ X) a
C.2.2 Basic Vector Operations ............................................................503 6 g- I8 c/ T9 S
C.3 Application Conveniences.....................................................................509 - M p) x& s3 r4 ?# M6 J8 wC.4 Rotation: Linear and Angular Velocities...............................................511 . P+ p3 d* D" p4 H. s) M; F' G5 o C.4.1 Planar Linear and Angular Velocities ........................................511 8 P5 ]+ K/ {$ A" n C.4.2 Rotation: The Angular Velocity Vector .....................................515 $ v: t6 C- \- t% N. s5 Y
References ...........................................................................................................518 , ^0 r, I. L z @
Appendix D # H$ ^! c P6 E; Y4 g. j* W
Hydraulic Losses: Basics and Gundrill Specifics............................................519 % N- T: A! K6 F- D0 O, A
D.1 Hydraulic Pressure Losses – General ....................................................519 ( c# P4 j- }' c4 i# N; z
D.1.1 Major Losses: Friction Factor ....................................................520 & r0 Y3 z( M- n3 U0 t
D.1.2 Minor Losses (Losses Due to Form Resistance) ........................521 $ G9 Z9 a) m" I: ^ D.2 Concept of the Critical MWF Velocity and Flow Rate .........................521 + [* u/ ?( c6 Z5 K
D.2.1 MWF Flow Rate Needed for Reliable Chip Transportation.......522 * S7 g( p) H y, l4 U# B5 A2 I8 D/ M D.2.3 Example D.1...............................................................................527 4 r$ z9 S3 T; a; jD.3 Inlet MWF pressure...............................................................................528 ' a4 e& t6 A5 ND.4 Analysis of Hydraulic Resistances ........................................................532 $ r: m( b& K" V3 }$ g' @2 s/ z D.4.1 Analysis of Hydraulic Resistances Over Which the Designer : Y& R' B+ r1 z/ i$ T! Y! |
Has No or Little Control ............................................................532 ( Q5 h x* d( k
D.4.2 Variable Resistances Over Which the Designer Has Control ....535 ) ?1 \$ i' H- H: hD.5 Practical Implementation in the Drill Design ........................................539 # z6 h. C6 p- }8 J. ]+ U1 o) u
References ..........................................................................................................543 2 P3 Z/ H$ A2 r2 f( P2 c
Appendix E $ w( G; ^/ w. f, w z; b
Requirements and Examples of Cutting Tool Drawings................................545 / @5 Y# X% p( L. T% a% D/ a8 F4 KE.1 Introduction ...........................................................................................545 8 F7 H: C9 T/ h/ U: {+ t0 _
E.2 Tool Drawings – the Existent Practice ..................................................546 " {, {2 g6 z$ l/ F1 y) y: o; l' D
E.3 Tool Drawing Requrements ..................................................................548 2 S3 @3 k8 F3 Y5 @ uE.4 Examples of Tool Drawing ...................................................................553 5 g2 e( w* z fReferences ..........................................................................................................559 . k( D4 V( b. }3 W2 z! hIndex…………………………………………………………………………….561 . U0 e D( O9 D9 w " V) ?1 d: K( p( \7 I c% P
. R8 w$ Y3 f/ j8 i! p7 x% x2 _, p 作者: 李東ld 時間: 2011-6-25 13:07
都是些神馬,?作者: showmark 時間: 2011-6-25 13:33
埋頭挖礦中,。,。。,。,。。,。,。。作者: lpg1988 時間: 2011-6-26 15:14
好東西啊,。,。。只是,,刀具不是我的工作,。。,。頂起,,不沉。,。,。作者: 機器鼠 時間: 2011-6-26 18:10
專業(yè)人士自有看法。作者: 招魂者 時間: 2011-6-27 18:42
好東西啊,,英文的,,看著太費勁了作者: 招魂者 時間: 2011-6-27 21:53
從網(wǎng)上查找這本書是Springer Series in Advanced Manufacturing叢書中的一本 2 L; J" ?$ E7 F9 m6 X) U8 i9 T請問這套叢書共包含哪幾本書作者: 狙擊手 時間: 2011-6-27 23:51
有翻譯了的嗎?* t! f8 M. K* b
鳥語,,麻煩,!作者: 狙擊手 時間: 2011-6-27 23:51
有翻譯了的嗎? & s* A( e1 b2 E: x2 j- h鳥語,,麻煩!作者: 機器鼠 時間: 2011-6-28 18:40
有機會時間誰翻譯了,,可以做高手了,。非“磚家”。作者: Valar_Morghulis 時間: 2013-8-12 10:13
這東西太好了,。作者: Valar_Morghulis 時間: 2013-8-12 10:18
怎么下不了作者: apple--apple 時間: 2013-8-13 22:29
看著不錯的資料作者: 把刀用好 時間: 2013-8-15 09:46
下了不能解壓縮,。。,。作者: quzhihua1016 時間: 2013-11-1 13:27
把刀用好 發(fā)表于 2013-8-15 09:46 ) E( h0 o1 j. x0 x
下了不能解壓縮,。,。。
$ r" [5 G# l o4 w5 E! b真的不能夠解壓縮嗎 0 C) ?2 M; n% U4 l2 S) L I# L作者: gshryl 時間: 2019-12-20 14:36
怎么解壓不了作者: stc223 時間: 2019-12-24 13:39
好東西,,還有沒有其他類似的資料呢