七七影院色七七_免费观看欧美a一级黄片_亚洲综合久久久久久中文字幕_国产999999在线视频免费观看,国产小视频无码,国产精品亚洲日日摸夜夜添,女人高潮潮叫免费网站,久久影院国产精品,日韩成人在线影院,欧美囗交XX×BBB视频,色在线综合高清

機(jī)械社區(qū)

 找回密碼
 注冊(cè)會(huì)員

QQ登錄

只需一步,,快速開(kāi)始

搜索
查看: 8340|回復(fù): 19
打印 上一主題 下一主題

Geometry_of_Single_point_Turning_Tools_and_Drills

[復(fù)制鏈接]
跳轉(zhuǎn)到指定樓層
1#
發(fā)表于 2011-6-23 22:58:22 | 只看該作者 回帖獎(jiǎng)勵(lì) |倒序?yàn)g覽 |閱讀模式
本帖最后由 機(jī)器鼠 于 2011-6-23 23:18 編輯
/ \. |+ D3 N0 U5 Q
9 @5 I! y( w  i$ `0 m$ [: d& jGeometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf; [' @  q" x+ B* S- R; v
有要的嗎?刀具,細(xì)節(jié),,很到位,。英文版。: C+ u$ V7 r4 H2 K( y2 _- m
國(guó)內(nèi)無(wú)人這么細(xì)研究的吧,?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 閱讀權(quán)限: 90, 下載次數(shù): 8, 下載積分: 威望 -10 點(diǎn)

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下載次數(shù): 7, 下載積分: 威望 -10 點(diǎn)

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下載次數(shù): 8, 下載積分: 威望 -10 點(diǎn)

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下載次數(shù): 6, 下載積分: 威望 -10 點(diǎn)

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下載次數(shù): 6, 下載積分: 威望 -10 點(diǎn)

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下載次數(shù): 6, 下載積分: 威望 -10 點(diǎn)

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 閱讀權(quán)限: 90, 下載次數(shù): 7, 下載積分: 威望 -10 點(diǎn)

1

2#
發(fā)表于 2011-6-24 19:17:16 | 只看該作者
說(shuō)什么的,?
3#
 樓主| 發(fā)表于 2011-6-24 22:02:25 | 只看該作者
Although almost any book and/or text on metal cutting, cutting tool design, and
# p' j, L4 ~% E' A+ @& ]manufacturing process discusses to a certain extent the tool geometry, the body of ! ^6 M( `( O* A6 @3 K) V, R
knowledge on the subject is scattered and  confusing. Moreover, there is no clear
$ {8 V4 K2 ^( Sobjective(s) set in the selection of the tool geometry parameters so that an answer
8 Z0 b$ R: C. P2 @& l: _to a simple question about optimal tool geometry cannot be found in the literature
7 Z* w. ^; D3 X) H' }* j4 oon the subject. This is because a criterion (criteria) of optimization is not clear, on 0 u  F' a0 L9 z5 r$ G
one hand, and because the role of cutting tool geometry in machining process * i% e/ a, K. k5 O( k8 ~
optimization has never been studied systematically, on the other. As a result, many
, n6 y4 ^& e, Kpractical tool/process designers are forced to use extremely vague ranges of tool - j! m1 g) R% l' q
geometry parameters provided by handbooks. Being at least 20+ years outdated, 8 p3 K1 L/ T7 R5 v. N
these data do not account for any particularities of a machining operation including 8 h, n' h; x) N/ B7 Z1 i
a particular grade of tool material, the condition of the machine used, the cutting
0 H  P) ~4 G( a" G+ afluid, properties and metallurgical condition of the work material, requirements to
" z, F3 c3 J0 N2 d  s" _the integrity of the machined surface, etc.
/ d+ Y. v% \. [  b0 _5 J7 C: \Unfortunately, while today's professionals, practitioners, and students are
/ C  w( h& m% N$ R3 W- Jinterested in cutting tool geometry, they are doomed to struggle with the confusing 8 U& C+ a- n( U# g% m4 L1 o
terminology. When one does not know what the words (terms) mean, it is easy to + l( P9 c, l; ~/ x: k+ j/ |
slip into thinking that the matter is difficult, when actually the ideas are simple, 8 _$ n8 X2 R1 {+ {0 }5 H+ C
easy to grasp, and fun to consider. It is the terms that get in the way, that stand as a
" `  R. Z" R7 d" K6 G; V# t3 Awall between many practitioners and science. This books attempts to turn those
% ]% J5 @0 I& G) uwalls into windows, so that readers can peer in and join in the fun of proper tool 2 B% A0 J) n; w' {, k- A
design.
  W4 U  A: i( S1 H  D0 ]So, why am I writing this book? There are a few reasons, but first and foremost, , l3 K3 p0 q3 U7 C( f, F2 L# m1 N1 Q
because I am a true believer in what we call technical literacy. I believe that
' \! c2 `5 H# _5 d) L# ?everyone involved in the metal cutting business should understand the essence and $ t5 h5 p5 G% O4 T0 S; `( E3 _
importance of cutting tool geometry. In my opinion, this understanding is key to
9 U+ P5 S# z9 v, p! himproving efficiency of practically all machining operations. For the first time, this
% n- _  x2 L5 |& Xbook presents and explains the direct correlations between tool geometry and tool 6 L  x! Y. Q; I9 Y/ J" x
performance. The second reason is that I felt that there is no comprehensive book
& K) F" `, ^. ~! k4 J/ h0 Don the subject so professionals, practitioners, and students do not have a text from
/ M2 c2 n6 ?4 A5 \9 V& \which to learn more on the subject and thus appreciate the real value of tool ' }- l! c4 y3 p3 p. e- `% P6 e/ S
geometry. Finally, I wanted to share the key elements of tool geometry that I felt + X6 V  R0 e& Q0 e/ r* w
were not broadly understood and thus used in the tool design practice and in
8 V7 w# d- e$ g7 K$ n: _optimization of machining operations in industry. Moreover, being directly 6 ~9 J1 ~; u- b. p
involved in the launch of many modern manufacturing facilities equipped with ) y$ m8 }# G- A+ ^) h
state-of-the-art high-precision machines, I found that the cutting tool industry is not " E# c; S0 s. \/ f% J$ {8 b
ready to meet the challenge of modern metal cutting applications. One of the key
6 f2 I8 i4 G; \issues is the definite lack of understanding of the basics of tool geometry of
/ v9 N) R4 q! ^  M& g% i: B$ _standard and application-specific tools. ! c" p& [* w7 m* W+ h% v) U
The lack of information on cutting tool geometry and its influence on the : ^2 X4 c; P: `8 H& C" B$ t
outcome of machining operations can be explained as follows. Many great findings : g' t  v  N: ~& [7 \# e* [: g
on tool geometry were published a long time ago when neither CNC grinding ' P4 u4 {7 R& F' V3 O+ _8 v
machines capable of reproducing any kind of tool geometry were available nor ' B& l% e/ z' u4 p& y: W
were computers to calculate parameters of such geometry (using numerical 5 h3 [0 Q0 h7 O  Z8 o, a( n
methods) common. Manual grinding using standard 2- and 3-axis simple grinding : }' V# u& n4 h/ z
features was common so the major requirement for tool geometry was the simpler
: i8 t" ?1 i$ G; W1 O. }5 |0 I8 C" ]the better. Moreover, old, insufficiently rigid machines, aged tool holders and part ' N: W  I' ]" b2 B( L  \6 Y
fixtures, and poor metal working fluid (MWF) selection and maintenance levered
  M/ f) K6 J% P* j$ X8 M: r( i" Q/ Gany advancement in tool geometry as its influence could not be distinguished under # A  W# C( }9 r
these conditions. Besides, a great scatter in the properties of tool materials in the * r) g3 M* P9 n% m- y
past did not allow distinguishing of the true influence of tool geometry. As a result,
! U1 U9 j- Z7 B- Ustudies on tool geometry were reduced to  theoretical considerations of features of 7 q$ |; ^. ?4 [2 ]( g" i
twist drills and some gear manufacturing  tools such as hobs, shaving cutters,
" S6 t$ J5 A1 D6 @8 |9 O' [shapers, etc.  5 Q5 X* o" J+ Y1 `0 ^* z. Y- z% y$ m
Gradually, once mighty chapters on tool geometry in metal cutting and tool 9 I1 q* U, P0 D9 o4 L6 Q. z/ e. d
design books were reduced to sections of few pages where no correlation between 5 Z, G# }/ L  ?5 t/ ~  m# O
tool geometry and tool performance is normally considered. What is left is a
% @0 i* N& S& l4 F' Qgeneral perception that the so-called “positive geometry” is somehow better than
- n; v+ l" l5 z5 c' D) i“negative geometry.” As such, there is no quantitative translation of the word ) @' ]7 v5 b5 _* i0 [% O
“better” into the language  of technical data although a great number of articles ; T. P% V$ Q2 y, h/ l( r
written in many professional magazines discuss the qualitative advantages of - a" b) B( p8 V/ D4 N3 R
“positive geometry.” For example, one popular manufacturing magazine article * G. r. L$ P6 a( z& h
read “Negative rake tools have a much  stronger leading edge and tend to push
: {5 j: C" n$ }* x8 ]against the workpiece in the direction of the cutter feed. This geometry is less free
; m$ u, C. k" _4 j- w+ Y+ g0 Wcutting than positive rakes and so consumes more horsepower to cut.” Reading
0 d. X- a1 c# Q* V9 T* t7 Ythese articles one may wonder why cutting tool manufacturers did not switch their
) A2 i) B! R) x8 X' [6 v; |tool designs completely to this mysterious “positive geometry” or why some of
# g5 O; J, y8 Cthem still investigate and promote negative geometry.
- c! P: I9 @$ dDuring recent decades, the metalworking industry underwent several important
' ~- b" ^6 B! ]7 A; P8 L8 `changes that should bring cutting tool geometry into the forefront of tool design 0 o' P/ ]6 a6 O$ j  n6 U
and implementation:
4#
 樓主| 發(fā)表于 2011-6-24 22:03:42 | 只看該作者
1   What Does It Mean “Metal Cutting”? ...........................................................1
" j4 K  |+ j' e1.1   Introduction ...............................................................................................1 % Z6 Z* w1 ]* I0 r( W* X/ I
1.2   Known Results and Comparison with Other Forming Processes ..............2
0 o. P1 }0 ^  |7 N  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2
! c  g# W3 V8 f. V  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  % g1 N" d4 \# i& g( u! {8 m
Operations .................................................................................................5 & g: G5 n. P2 j; K8 }" L8 h
1.3   What Went Wrong in the Representation of Metal Cutting?...................22 6 ]; Z' m6 ]5 s! [! i
  1.3.1   Force Diagram..............................................................................23
; W1 Y( F: y8 A) m4 S  1.3.2   Resistance of the Work Material in Cutting.................................25 ' D" a( j. i& e+ s: o
  1.3.3   Comparison of the Known Solutions for the Single-shear  
. w1 R, s% {# x2 Y4 E  q0 Y  Plane Model with Experimental Results .................................................27 - a4 V8 D3 A1 n& G
1.4   What is Metal Cutting?............................................................................28 / c3 X6 S9 H. c- A% f) Y- z* w
  1.4.1   Importance to Know the Right Answer........................................28
7 Y! T2 l4 |) k" ?3 r 1.4.2  Definition .....................................................................................28   z" H+ o( j, R: P! c
  1.4.3   Relevance to the Cutting Tool Geometry.....................................29
% u8 n- z2 M  c& W4 @% m1.5   Fundamental Laws of Metal Cutting.......................................................32
5 j% j" Y* j+ g" D$ N  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32 % ~; _7 B9 W* }# A) C) {
1.5.2  Deformation Law.........................................................................35
' }7 K$ U9 R6 U9 E  Q7 eReferences........................................................................................................50 . Y: i- `2 x0 E& M- T
2   Basic Definitions and Cutting Tool Geometry,  + `! W- e6 ]( y
Single Point Cutting Tools ............................................................................55
  n7 K7 ]4 C7 E4 j2.1   Basic Terms and Definitions ...................................................................55
8 n3 S2 f* _6 w6 G5 H' c( o- G' Y 2.1.1  Workpiece Surfaces.......................................................................57
: `! _& {7 b! m, ? 2.1.2  Tool Surfaces and Elements ..........................................................57
" i$ ~5 [1 H5 w3 ~8 P1 g" P6 e 2.1.3  Tool and Workpiece Motions.......................................................57 - e- O1 w3 P7 A# h4 v" f
2.1.4  Types of Cutting ............................................................................58 " R$ v6 z6 F2 u
2.2   Cutting Tool Geometry Standards...........................................................60
9 x, z9 r  A) a9 z2.3   Systems of Consideration of Tool Geometry ..........................................61 ' G+ D5 R' I; O7 C# U! h3 t
2.4.  Tool-in-hand System (T-hand-S) .......................................................64
* E! ~* z4 @: T8 b6 \3 ^# _( h  2.4.1   Tool-in-hand Coordinate System.................................................64 4 c/ Z1 y# h2 P
2.4.2  References Planes ........................................................................66
$ t" j) }; Q- [# e, T$ b2 f4 t 2.4.3  Tool Angles..................................................................................68
5 {/ I4 x, ^/ V. o% J  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74
) I7 \- o" _2 u4 x& V# e2.5   Tool-in-machine System (T-mach-S)......................................................84
& G* P/ v$ z5 ^! B 2.5.1  Angles ..........................................................................................84
% E% K8 ~/ T4 a/ d' R  N4 s" P  2.5.2   Example 2.3 .................................................................................88
  C  R. E# U& D; W2.6   Tool-in-use System (T-use-S) .................................................................90
" \4 g/ V' A& `# T5 A 2.6.1  Reference Planes ..........................................................................91 $ m0 o  j5 X% e0 r
2.6.2  The Concept .................................................................................92
( h! |$ R/ d* l7 B/ |% J% a, C  2.6.3   Modification of the T-hand-S Cool Geometry .............................92 1 V2 Y) x. P* [( c/ x
  2.6.4   Kinematic Angles.........................................................................98 ' s+ t0 \: }, v9 \( N; X! p
  2.6.5   Example 2.4 ...............................................................................100 ' f0 R# X" F' a1 i& ^- i) }0 ?
2.7   Avalanched Representation of the Cutting Tool Geometry  $ l+ M4 o1 I6 J8 Y
in T-hand-S............................................................................................102 5 |: O1 `2 u* B6 F' h
2.7.1  Basic Tool Geometry .................................................................102 5 v2 ~% Y. B1 s0 _
2.7.2   Determination of Cutting Tool Angles Relation
2 Z6 N5 ]0 I$ j) s; L/ |( n* k  for a Wiper Cutting Insert ..........................................................108
& j+ X1 ~- u) E6 _; I8 g( k  2.7.3   Determination of Cutting Tool Angles  
* o* X- V1 ^0 V" Y6 _$ o% _( G! }   for a Single-point Tool ...............................................................110 ( k# v) v# x' A+ W- B7 F( m! ]
  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117   u7 W) [) o! s" `+ w9 g+ j
  2.7.5   Summation of Several Motions..................................................119 3 e  W3 m# r  Q  r( ]- z+ d! A. j
References......................................................................................................125
9 q, @* ^5 {5 D6 L9 h; ^3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127 6 Q% T/ w6 f* n' D
3.1   Introduction ...........................................................................................127
+ @. X9 e6 x1 z" Z/ N- P, n5 t3.2   General Considerations in the Selection of Parameters  
2 U- a; H5 {1 d. S  of Cutting Tool Geometry .....................................................................129 . l  O; R) {5 O5 u( U
3.2.1 Known Results .............................................................................129 8 ^! s, j; p2 }; S$ t) n, m; \4 j
  3.2.2 Ideal Tool Geometry and Constrains............................................130
+ n3 t9 Q& S! t+ {; \5 T" u  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132 2 _( p2 b( W# n0 z! P1 F. k3 E
3.3   Tool Cutting Edge Angles .....................................................................132
. e! J* f: v$ K' P 3.3.1  General Consideration................................................................132   J( y3 Q) S9 B2 t) i6 @9 k
  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134
1 {! b' X6 Z1 h4 o: N/ Y  3.3.3   Influence on the Surface Finish..................................................142
4 k+ E8 ~% J, r3 q: V 3.3.4  Tools with κr > 90°.....................................................................144
" H7 J4 o/ H# ^1 y1 O! Q  3.3.5   Tool Minor Cutting Edge Angle ................................................147 * Q/ f4 J' n3 X. K% X6 b% V
3.4.  Edge Preparation ...................................................................................161 4 _- ]; c# x$ x* [  o
3.4.1  General .......................................................................................161 3 ]' S2 M5 C1 K# U
  3.4.2   Shape and Extent........................................................................163
9 A  O" h3 g4 H2 B 3.4.3  Limitations .................................................................................163
3 x+ Z* l; W7 \5 ]! ?/ ]6 Z, ]  3.4.4   What Edge Preparation Actually Does.......................................169
" ^/ s/ |$ R* T8 Z6 e* j+ ?( Q1 u3.5   Rake Angle............................................................................................171 1 D/ A+ y  v$ g/ k4 [; U( {4 w, S4 {
3.5.1  Introduction................................................................................171
, k5 l6 g: I0 P: |& s  D4 u  3.5.2   Influence on Plastic Deformation and Generazliations ..............175 8 i3 o* h# P. T, {
  3.5.3   Effective Rake Angle .................................................................183 - F: G$ B0 W9 F( E) u
  3.5.4   Conditions for Using High Rake Angles....................................189 ) D  \- o+ k- c3 P7 o. z# `2 `# M
3.6   Flank Angle ...........................................................................................191 % t, V' c& L# m) j8 l+ P
3.7   Inclination Angle...................................................................................193   s1 ~. R$ H  S- A2 N
      3.7.1   Turning with Rotary Tools.........................................................195
" P5 }" j% D8 j/ q8 T& \ 3.7.2  Helical Treading Taps and Broaches..........................................197
: X" d: e4 O5 }& y4 X 3.7.3  Milling Tools..............................................................................198
/ f- |2 L. w4 t- P/ a% eReferences......................................................................................................201
1 b6 I' j2 C4 P& d, q# h* V; {4   Straight Flute and Twist Drills ...................................................................205
" ]7 i9 J, Z# \3 g/ n" C1 T4.1   Introduction ...........................................................................................205
; w! U  B3 c2 H4.2   Classification.........................................................................................206 # }7 N* j9 {) `2 p3 s3 g+ O8 E
4.3   Basic Terms...........................................................................................208 # e, _# `: r. x5 Z; z% \7 H
4.4   System Approach ..................................................................................211
& B1 \# g9 Q' r6 ^- A- k. D  D 4.4.1  System Objective .......................................................................212 1 ^$ G% |3 p% d+ Y
4.4.2  Understanding the Drilling System............................................212
" r. c/ J4 W6 e) t+ D! [& Y  4.4.3.  Understanding the Tool..............................................................212 0 f: e, D3 F# [6 E  H* B/ S6 E! z$ C
4.5.  Force System Constrains on the Drill Penetration Rate ........................213 1 @0 D8 `+ J+ @! K
  4.5.1   Force-balance Problem in Conventional Drills ..........................213 # s* W. b$ Y- L- V6 L. F
  4.5.2   Constrains on the Drill Penetration Rate....................................218 " B4 s: r/ r5 H# d
4.5.3  Drilling Torque ..........................................................................219 ! J0 U+ X  t" C2 W- J6 _
4.5.4  Axial Force.................................................................................220
5 a- g  F3 T% A3 a. g  A$ \5 Y7 B  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221 % C; d+ @+ Y$ I8 D! h1 G8 z; b
4.6   Drill Point ..............................................................................................223
% x/ g) T/ g2 [- L* N 4.6.1  Basic Classifications ..................................................................223   A  g, v* l0 I/ @' d
  4.6.2   Tool Geometry Measures to Increase the Allowable  
& E  w7 A* @% r2 X$ D Penetration Rate ....................................................................................224
! q# g6 r. r) k# Z% u- [. b, Y* W3 U4.7   Common Design and Manufacturing Flaws..........................................259
9 u+ {( s3 O, z8 T" G3 t( ~: [: O  4.7.1   Web Eccentricity/ Lip Index Error.............................................260
4 a0 A) f0 ~" h  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261 & O9 _, D2 v/ i( P+ {4 p3 a, q
4.7.3  Coolant Hole Location and Size.................................................263
" E! T) F  t( {0 U8 G( B2 Z4.8   Tool Geometry ......................................................................................267
" Q0 }6 J/ D7 U  4.8.1   Straight-flute and Twist Drills Particularities............................269
$ x" g5 f4 W; `8 p! p  4.8.2   Geometry of the Typical Drill Point ..........................................270 / A; F. |0 K# v' l& g
  4.8.3   Rake Angle.................................................................................272
/ u" T  ^2 c6 i* h5 f  4.8.4  Inclination Angle .........................................................................280 8 i& g' u% G# i
4.8.5  Flank Angle................................................................................281
# h& t# Q9 X0 N3 D5 q$ H& c: `& }$ w' `  4.8.6   Geometry of a Cutting Edge Located at an Angle  
! a- @+ _* k: Y2 h( O4 W   to the y0-plane ............................................................................292 7 }1 ?0 }9 X( d& R* J; R
4.8.7  Chisel Edge ................................................................................295 5 `0 T2 l: j& p$ x
  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306 " K" K3 d$ y, I8 x4 U# U
  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310
- m  U6 B1 f# i 4.8.10  Flank Formed by Quadratic Surfaces.........................................313 ; I* }1 b6 U* n! j9 l, g. y& w
4.9   Load Over the Drill Cutting Edge .........................................................324
6 ^1 s: ~- N: U   4.9.1   Uncut Chip Thickness in Drilling ..............................................325
) v5 S$ A  |. C+ F  4.9.2   Load Distribution Over the Cutting Edge ..................................327
" `+ W4 a  n4 y% J, [+ h4.10  Drills with Curved and Segmented Cutting Edges ................................328
' |+ E5 ^9 v; M* R4 Y' |9 [6 S  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329
7 O. J- }8 Z$ j/ k2 |8 k  4.10.2 Rake Angle.................................................................................332
/ c, L4 h# }' N& y0 @: P9 bReferences......................................................................................................337 7 x- v' x, _& p) N7 |: [. O1 C
5   Deep-hole Tools............................................................................................341 % q7 r, q; c4 Y0 R1 g# N7 @; G4 A
5.1   Introduction ...........................................................................................341 % o: t$ ?0 g  u; E0 M4 v9 J3 U
5.2   Generic Classification of Deep-hole Machining Operations.................343
9 t& ]4 G1 p- L5 v% d) x- q5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345 9 p% I# _) i+ A8 J5 o1 y" P7 K
  5.3.1   Force Balance in Self-piloting Tools..........................................345
) ?7 }, T1 G) t! e5.4   Three Basic Kinematic Schemes of Drilling .........................................350 0 x$ b5 Y& [9 g- S2 z! w
  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351
" M9 A; s6 i' v4 b& k 5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352
# v7 O) z  {0 {% Z8 D' r5 `; w 5.4.3  Counterrotation ..........................................................................352 2 n, X" ], I2 {8 |
5.5   System Approach ..................................................................................353 + i! z% j5 B% v: f3 m2 f
  5.5.1   Handling Tool Failure ................................................................353
4 ?# I3 h  i% S4 H! Z6 K 5.5.2  System Considerations ...............................................................354
5 z' w+ ]# {; u/ o' O3 P: T5.6   Gundrills................................................................................................362
$ a4 W# q: R# F( M- H. T' T 5.6.1  Basic Geometry..........................................................................362 , q9 h+ F% W  u- B( ]. E
5.6.2  Rake Surface ..............................................................................365 5 |9 I. Y" b$ e) d# ^
  5.6.3   Geometry of Major Flanks .........................................................370
; N! l+ A2 X- |9 Y) G) V 5.6.4  System Considerations in Gundrill Design ................................390
. B' I- M: L* ~* q9 c  m5.6.5   Examplification of Significance of the High MWF Pressure : Q2 w+ j5 ?) U2 K. k. W; O
  in the Bottom Clearance Space ..................................................423 0 u! X, y. h. V* `# b8 e! A
  5.6.6   Example of Experimental Study ................................................425 6 b0 q) m8 ]" P9 d
  5.6.7   Optimization of Tool Geometry.................................................439 ) ~5 i& g1 N* B+ V
References......................................................................................................440 8 E- _9 v8 \6 s; ~1 E( D& B0 k
Appendix A  0 S  k9 O1 q( f) D
Basic Kinematics of Turning and Drilling.......................................................443 ; W1 l/ E# r) S$ M. L" C5 j/ @
A.1   Introduction ...........................................................................................443
# J# W3 u: j- E8 W3 x- vA.2  Turning and Boring ...............................................................................444 % S9 _" X0 Z' I- f: f/ Z
  A.2.1  Basic Motions in Turning...........................................................444
- G7 z$ x0 E6 k* I. t! u" d0 M* b, X  A.2.2  Cutting Speed in Turning and Boring ........................................448
# [4 \) }; \2 [9 |/ H  A.2.3  Feed and Feed Rate ....................................................................448 & h& j) x5 I( S5 S
  A.2.4  Depth of Cut...............................................................................449
2 i" p, _( W5 p, Z, B# M- _ A.2.5  Material Removal Rate ..............................................................449 $ i  ?; w  j7 u' [
A.2.6  Resultant Motion........................................................................450 0 E3 ^4 _7 }: Z
A.3  Drilling and Reaming ............................................................................450
- E- p+ W# O" x- [# e4 \$ B A.3.1  Basic Motions in Drilling...........................................................450   w/ j2 q4 M/ _! p
A.3.2  Machining Regime.....................................................................451
9 d' Y5 Q3 M1 _: W/ [A.4  Cutting Force and Power .......................................................................453
  x' P# }' K3 F  A.4.1  Force System in Metal Cutting...................................................453 ( Z. k+ f& F3 T
  A.4.2  Cutting Power ............................................................................454
6 c+ Z3 n: _, G A.4.3  Practical Assessment of the Cutting Force.................................455
1 N6 o' K; ]# `: O& S6 b1 V- ]References......................................................................................................461 / s1 U) U7 _% |. ^7 q7 u+ ^
Appendix B  ) q0 k0 q2 N3 u5 s$ M+ S
ANSI and ISO Turning Indexable Inserts and Holders.................................463 0 m$ d, K0 D+ E/ |( s0 `
B.1   Indexable Inserts ...................................................................................463 & U7 K3 i0 p' S, T  U
  B.1.1  ANSI Code .................................................................................464 $ o( i0 F; r: |  h& A( H" ?
B.1.2  ISO Code....................................................................................471   N& l" R/ P0 g/ l
  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491
) |. A2 Q- r. I2 b( g$ r  B.2.1   Symbol for the Method of Holding Horizontally Mounted  ! ^- Z! J& {9 O' n) u
Insert – Reference Position (1) ..............................................................492 % L4 |# H; {! B1 y, o/ k
  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493
* j" T6 ?1 P$ q% G, w  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493
! \/ e* T0 T& A/ N7 n- |- N1 D  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  5 h4 h( Z. n7 B7 I9 o5 w9 r
   Reference Position (4)................................................................494 / v6 z8 \8 k6 T% t7 O$ `8 \# E
  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494 & s- ~3 Y5 R* U! S( i5 l% h
  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  
3 d& W7 P- `: k5 A, n    and Height of Cutting Edge) - Reference Position (6) ...............494 $ ]% z, d- p" t. o( w  r  Q
  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  
1 e1 ~% m) P8 Y0 K% N; Q! P6 |/ p   Reference Position (7)................................................................495
7 X5 ~. W) w2 h0 k' K3 Y: e  B.2.8  Number Symbol Identifying Tool Length –  5 \% z% k; Q. C6 n
   Reference Position (8)................................................................495
7 Y& ?+ [" u" z) a  B.2.9   Letter Symbol Identifying Indexable Insert Size –  4 Q% _- I1 R/ h0 F( X5 [0 I& U
   Reference Position (9)................................................................497
: U; l! i; f  l$ C7 FAppendix C  5 r( y, T5 E8 d% T
Basics of Vector Analysis ..................................................................................499 ) S8 F+ ?5 g1 \! X
C.1   Vectors and Scalars ...............................................................................499 9 g! r% D4 [$ v2 i* h) J
C.2   Definition and Representation...............................................................500
) K) X, K& R0 R. ~ C.2.1  Definitions..................................................................................500
+ n6 G/ v# O* G8 n C.2.2  Basic Vector Operations ............................................................503 8 L! S: e2 \  h, w( ]# f- r
C.3   Application Conveniences.....................................................................509
% I. T3 S3 H! w1 y* B+ Z2 GC.4  Rotation: Linear and Angular Velocities...............................................511 $ Y. b0 e& W. J# v; d% b/ a# I
  C.4.1   Planar Linear and Angular Velocities ........................................511 : k# A7 F% l  j+ \# U: |* q% T
  C.4.2   Rotation: The Angular Velocity Vector .....................................515
% p( d) v  q- A% M& u& mReferences ...........................................................................................................518 : a% V2 d, j2 h& c* Y& J3 ]
Appendix D  % P. h0 v% E+ H+ Z4 B
Hydraulic Losses: Basics and Gundrill Specifics............................................519
! N# i, \8 Y# p1 q4 W; ?D.1  Hydraulic Pressure Losses – General ....................................................519
. Q1 g4 ?4 P$ u& k. o D.1.1  Major Losses: Friction Factor ....................................................520 4 A9 r% A7 u  j6 D! |
  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521 . ]& L1 G9 b, @3 K
D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521
% @1 [- h+ |2 |0 u  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522
! H- q% T( G4 B3 C  D.2.3  Example D.1...............................................................................527
0 t( W) x* t* }) d1 w# a1 dD.3   Inlet MWF pressure...............................................................................528
+ w. d, T) ~) l( a/ c3 o2 nD.4  Analysis of Hydraulic Resistances ........................................................532
1 R& a' k) S4 q8 k. x3 i  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  
* H0 R. f" x* k  ]! G) D- ^    Has No or Little Control ............................................................532 1 z% t5 B# R$ ~/ @  N) E1 Z+ s
  D.4.2  Variable Resistances Over Which the Designer Has Control ....535
) D* h- C9 `+ L# xD.5   Practical Implementation in the Drill Design ........................................539
/ i" I3 v9 o4 f/ z' ]References ..........................................................................................................543 7 z5 a- ~8 J/ q2 b- l/ C- u
Appendix E & {2 A1 x8 g2 J2 ~
Requirements and Examples of Cutting Tool Drawings................................545 ' A" `5 A! F/ w6 c0 i# m" J
E.1   Introduction ...........................................................................................545 + S* i2 j' Z/ A$ T" V4 T- t
E.2   Tool Drawings – the Existent Practice ..................................................546
, c7 W  D7 [4 T. W0 d, y, h5 g; vE.3   Tool Drawing Requrements ..................................................................548 2 P3 P) ^$ E# i
E.4   Examples of Tool Drawing ...................................................................553
7 R. q# k. l! ^0 A4 {$ [8 I  V4 Q8 NReferences ..........................................................................................................559
* l: D  h3 @! iIndex…………………………………………………………………………….561 6 S8 x6 H; g* g$ W' ~& K
, K1 \: ?0 `/ l) k3 d5 L+ x# ~

5 Y$ t/ ], Q- [8 P% N
5#
發(fā)表于 2011-6-25 13:07:50 | 只看該作者
都是些神馬?
6#
發(fā)表于 2011-6-25 13:33:41 | 只看該作者
埋頭挖礦中,。,。。,。,。。,。,。。
7#
發(fā)表于 2011-6-26 15:14:56 | 只看該作者
好東西啊,。,。。只是,,刀具不是我的工作,。,。。頂起,,不沉,。。,。
8#
 樓主| 發(fā)表于 2011-6-26 18:10:54 | 只看該作者
專(zhuān)業(yè)人士自有看法,。
9#
發(fā)表于 2011-6-27 18:42:38 | 只看該作者
好東西啊,英文的,,看著太費(fèi)勁了
10#
發(fā)表于 2011-6-27 21:53:22 | 只看該作者
從網(wǎng)上查找這本書(shū)是Springer Series in Advanced Manufacturing叢書(shū)中的一本# b$ T  ~* {3 g( i
請(qǐng)問(wèn)這套叢書(shū)共包含哪幾本書(shū)

本版積分規(guī)則

小黑屋|手機(jī)版|Archiver|機(jī)械社區(qū) ( 京ICP備10217105號(hào)-1,京ICP證050210號(hào),,浙公網(wǎng)安備33038202004372號(hào) )

GMT+8, 2025-4-2 20:22 , Processed in 0.073029 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回復(fù) 返回頂部 返回列表