七七影院色七七_免费观看欧美a一级黄片_亚洲综合久久久久久中文字幕_国产999999在线视频免费观看,国产小视频无码,国产精品亚洲日日摸夜夜添,女人高潮潮叫免费网站,久久影院国产精品,日韩成人在线影院,欧美囗交XX×BBB视频,色在线综合高清

機械社區(qū)

 找回密碼
 注冊會員

QQ登錄

只需一步,,快速開始

搜索
查看: 8358|回復(fù): 19
打印 上一主題 下一主題

Geometry_of_Single_point_Turning_Tools_and_Drills

[復(fù)制鏈接]
跳轉(zhuǎn)到指定樓層
1#
發(fā)表于 2011-6-23 22:58:22 | 只看該作者 回帖獎勵 |倒序瀏覽 |閱讀模式
本帖最后由 機器鼠 于 2011-6-23 23:18 編輯 4 t3 C  }6 K4 L( w5 p4 x) m" j3 R

1 H* H! o9 i+ u+ bGeometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf
' F: a& G0 p$ b4 D$ J, D有要的嗎,?刀具,,細節(jié),很到位,。英文版,。
; a" C% |/ N5 b3 Q% s1 @9 ?6 Q國內(nèi)無人這么細研究的吧?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 閱讀權(quán)限: 90, 下載次數(shù): 8, 下載積分: 威望 -10 點

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下載次數(shù): 7, 下載積分: 威望 -10 點

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下載次數(shù): 8, 下載積分: 威望 -10 點

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下載次數(shù): 6, 下載積分: 威望 -10 點

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下載次數(shù): 6, 下載積分: 威望 -10 點

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下載次數(shù): 6, 下載積分: 威望 -10 點

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 閱讀權(quán)限: 90, 下載次數(shù): 7, 下載積分: 威望 -10 點

1

2#
發(fā)表于 2011-6-24 19:17:16 | 只看該作者
說什么的,?
3#
 樓主| 發(fā)表于 2011-6-24 22:02:25 | 只看該作者
Although almost any book and/or text on metal cutting, cutting tool design, and
! t6 v3 ~0 y9 ?# C) b5 r+ ]( lmanufacturing process discusses to a certain extent the tool geometry, the body of
3 n: b7 _4 e  i# xknowledge on the subject is scattered and  confusing. Moreover, there is no clear
5 p: x, K4 m/ a8 w4 l$ mobjective(s) set in the selection of the tool geometry parameters so that an answer ! h0 r! e# v) {) B! Q8 u
to a simple question about optimal tool geometry cannot be found in the literature . h( Q5 S8 j7 `, k' C1 X7 y3 H
on the subject. This is because a criterion (criteria) of optimization is not clear, on
: z# k* H& T0 w  l$ W% @$ e# Xone hand, and because the role of cutting tool geometry in machining process
6 v# e4 s% ~( V# ioptimization has never been studied systematically, on the other. As a result, many
7 P# o) b2 d) s" T- _% E9 Dpractical tool/process designers are forced to use extremely vague ranges of tool / J! F' R( J. F2 z" O
geometry parameters provided by handbooks. Being at least 20+ years outdated, & _0 n* t& N! d. H4 N
these data do not account for any particularities of a machining operation including ( g) J- t; M) t' S( i; P% W2 [7 s$ I
a particular grade of tool material, the condition of the machine used, the cutting
/ x6 p# ^$ W8 zfluid, properties and metallurgical condition of the work material, requirements to
  j' d, [9 ]) _2 \the integrity of the machined surface, etc.
9 {# n$ e1 m+ l% L9 WUnfortunately, while today's professionals, practitioners, and students are 8 M5 ]( n: I" F8 e2 y$ S1 {
interested in cutting tool geometry, they are doomed to struggle with the confusing
9 Z1 k9 o2 ?- Uterminology. When one does not know what the words (terms) mean, it is easy to
! l( ~' |$ ?2 rslip into thinking that the matter is difficult, when actually the ideas are simple, - ?& a. G/ o/ C( A
easy to grasp, and fun to consider. It is the terms that get in the way, that stand as a
$ ~5 C9 y% [. f6 wwall between many practitioners and science. This books attempts to turn those
0 z  L, i1 |# d: U2 Jwalls into windows, so that readers can peer in and join in the fun of proper tool ) d" x0 E9 E! Z0 o
design.
6 U, ?- |1 x' B' m) P# {9 WSo, why am I writing this book? There are a few reasons, but first and foremost,
+ J. g, _  M7 O6 U$ K! l" d+ H  zbecause I am a true believer in what we call technical literacy. I believe that
* X8 i7 w9 y6 G- j2 L1 Reveryone involved in the metal cutting business should understand the essence and
4 H/ f2 R% I4 S$ O* \& ?0 yimportance of cutting tool geometry. In my opinion, this understanding is key to   X% M6 \0 M- r( u8 C
improving efficiency of practically all machining operations. For the first time, this
* i5 P$ Q% a0 m% h8 a) \' p2 Qbook presents and explains the direct correlations between tool geometry and tool ! U) r( t6 l) @; K2 P
performance. The second reason is that I felt that there is no comprehensive book   a' N/ q; z& C1 r5 P& V$ d' L
on the subject so professionals, practitioners, and students do not have a text from ; s: ?+ P) Y  t- G9 C
which to learn more on the subject and thus appreciate the real value of tool
) ?7 H6 n" j6 ~! |geometry. Finally, I wanted to share the key elements of tool geometry that I felt 1 n% [3 Z: L/ D- q: Y
were not broadly understood and thus used in the tool design practice and in 5 v) X: a/ A5 j6 Z2 T/ o. x/ l
optimization of machining operations in industry. Moreover, being directly
! _- c5 f+ i& d+ G3 c/ x0 qinvolved in the launch of many modern manufacturing facilities equipped with
1 n/ e$ Q! w8 fstate-of-the-art high-precision machines, I found that the cutting tool industry is not 0 A# }/ G  i3 L
ready to meet the challenge of modern metal cutting applications. One of the key
; L; j; y! X( {' ]" lissues is the definite lack of understanding of the basics of tool geometry of " h+ u" o) E# ]8 _- K
standard and application-specific tools.
8 k+ B# D/ i- i0 P$ BThe lack of information on cutting tool geometry and its influence on the / H& a9 V) ]+ n( {0 K# O
outcome of machining operations can be explained as follows. Many great findings
0 ?" n2 f2 B4 Mon tool geometry were published a long time ago when neither CNC grinding   T' Q/ \* ~% X
machines capable of reproducing any kind of tool geometry were available nor
$ \) O6 w: P! V6 P6 W  b% Owere computers to calculate parameters of such geometry (using numerical * m3 F: Q' n: o! G8 X' u; Z- W' u1 U
methods) common. Manual grinding using standard 2- and 3-axis simple grinding + P! O" L9 L2 G4 v& T9 {+ `
features was common so the major requirement for tool geometry was the simpler # M$ S5 c. j3 u4 W8 |
the better. Moreover, old, insufficiently rigid machines, aged tool holders and part
  w  u* F2 T- ^: O1 A) Mfixtures, and poor metal working fluid (MWF) selection and maintenance levered
6 ^) R3 ]! K5 s6 N! uany advancement in tool geometry as its influence could not be distinguished under " d. j. A, |, X+ F2 L* K( d
these conditions. Besides, a great scatter in the properties of tool materials in the
3 f) c  D# ?$ _6 Bpast did not allow distinguishing of the true influence of tool geometry. As a result,
' u1 G8 d' |1 A. T% gstudies on tool geometry were reduced to  theoretical considerations of features of 1 j1 b7 @* X2 \7 f
twist drills and some gear manufacturing  tools such as hobs, shaving cutters,
/ g7 j; n$ ]# A2 h2 v5 j. hshapers, etc.  9 N3 J' x. m$ i! q# z# K) o
Gradually, once mighty chapters on tool geometry in metal cutting and tool . x/ h+ d9 D( R$ q
design books were reduced to sections of few pages where no correlation between ( C. q6 r- v# J& X
tool geometry and tool performance is normally considered. What is left is a 8 R# T( u3 _6 G/ F7 C+ `
general perception that the so-called “positive geometry” is somehow better than
; c: T( n) {2 A0 v3 w“negative geometry.” As such, there is no quantitative translation of the word
# `# ~0 [/ {* I8 b0 l' C“better” into the language  of technical data although a great number of articles ; [3 [  \1 L) _  ^9 t
written in many professional magazines discuss the qualitative advantages of
4 K+ e) K- m- F2 |" \“positive geometry.” For example, one popular manufacturing magazine article
4 D+ G8 l; F7 F9 _, o9 Uread “Negative rake tools have a much  stronger leading edge and tend to push 9 T/ {% `3 B0 s0 `) A" d% K$ z# m
against the workpiece in the direction of the cutter feed. This geometry is less free 4 x7 m, J2 c( B/ g7 l
cutting than positive rakes and so consumes more horsepower to cut.” Reading 6 A. g1 {5 G- v
these articles one may wonder why cutting tool manufacturers did not switch their # w/ z& x5 x* k$ l" U+ K" U3 |
tool designs completely to this mysterious “positive geometry” or why some of
- x3 T; X' P; |. Q; Fthem still investigate and promote negative geometry. 2 O( z# R) l0 B- f: l( T
During recent decades, the metalworking industry underwent several important / U8 s3 `! t, M
changes that should bring cutting tool geometry into the forefront of tool design
% M! K/ r' {! u# r4 R/ D; Uand implementation:
4#
 樓主| 發(fā)表于 2011-6-24 22:03:42 | 只看該作者
1   What Does It Mean “Metal Cutting”? ...........................................................1
9 O5 t3 `+ M: V2 v- ]1.1   Introduction ...............................................................................................1
! o. [4 |7 [9 I# o( i1.2   Known Results and Comparison with Other Forming Processes ..............2 2 S1 T  P$ K/ D) Y
  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2
: Y( a+ V! C8 v9 q5 c' c  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  : k1 m/ a- A; [) U& ^
Operations .................................................................................................5 0 W/ b, s/ h) e
1.3   What Went Wrong in the Representation of Metal Cutting?...................22 ! n- h8 U. X2 W7 Z" F& j
  1.3.1   Force Diagram..............................................................................23 1 z$ b2 O  T) x
  1.3.2   Resistance of the Work Material in Cutting.................................25 : Q& d3 I+ p+ a$ o
  1.3.3   Comparison of the Known Solutions for the Single-shear  + t, S' ]; t3 g' s2 U7 [
  Plane Model with Experimental Results .................................................27 - H9 R! l5 Z! ?; W, i* T
1.4   What is Metal Cutting?............................................................................28
9 e6 U- S: @4 ~: E! ~, {  1.4.1   Importance to Know the Right Answer........................................28 : Y' ^$ B4 h5 F0 Q! S# I. Z0 I
1.4.2  Definition .....................................................................................28 * G7 n. @) _6 c4 P/ k& H( g
  1.4.3   Relevance to the Cutting Tool Geometry.....................................29 6 U  b9 K& F0 x0 h+ {
1.5   Fundamental Laws of Metal Cutting.......................................................32   {! n" b' c7 V* g  I) N
  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32
8 Q, }) w9 ^8 B4 {. G+ j1 h: ~ 1.5.2  Deformation Law.........................................................................35
# a7 Y# X7 g( ?2 i( C- K/ ZReferences........................................................................................................50
& E/ m. }  z/ [# E7 Q 2   Basic Definitions and Cutting Tool Geometry,  2 g) Z7 y! i; o4 A/ F# e* }
Single Point Cutting Tools ............................................................................55 - Q' {* I, V7 F+ \1 A. q4 ]
2.1   Basic Terms and Definitions ...................................................................55
) k( |$ A  o6 g/ ] 2.1.1  Workpiece Surfaces.......................................................................57 # Z" ^. M% y8 _$ D, D5 |
2.1.2  Tool Surfaces and Elements ..........................................................57 0 d1 z, Q" l  r% W9 M& u9 E
2.1.3  Tool and Workpiece Motions.......................................................57
8 ]" c6 G5 _" h- I% ] 2.1.4  Types of Cutting ............................................................................58 % e5 m! y# t) _) Y# S
2.2   Cutting Tool Geometry Standards...........................................................60 + y- k' w1 \6 H: T2 s
2.3   Systems of Consideration of Tool Geometry ..........................................61 ! V6 {! l' y+ e! @/ x/ I
2.4.  Tool-in-hand System (T-hand-S) .......................................................64
/ b4 }4 Z7 R  S, P! y$ p  2.4.1   Tool-in-hand Coordinate System.................................................64
( o, i) J2 M; X2 x7 m$ [ 2.4.2  References Planes ........................................................................66
6 D: P4 ~' j( [3 A 2.4.3  Tool Angles..................................................................................68 / D7 L: m0 P: x' s; Q
  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74
9 N1 l4 {! o, x5 r/ J2.5   Tool-in-machine System (T-mach-S)......................................................84 , d" B3 b& l+ A: P, g: ^
2.5.1  Angles ..........................................................................................84
6 N) [$ s6 k/ |9 o+ M! H  2.5.2   Example 2.3 .................................................................................88
) |# \/ D. l4 M7 I6 E2.6   Tool-in-use System (T-use-S) .................................................................90
1 `! V5 s; ]  N" B0 n 2.6.1  Reference Planes ..........................................................................91
1 \# h4 l' M0 l, Y1 A, O3 @ 2.6.2  The Concept .................................................................................92   S4 q$ Y1 R* O+ `  ?$ A! L) E. i
  2.6.3   Modification of the T-hand-S Cool Geometry .............................92
2 e0 ^# X8 v3 }1 [  2.6.4   Kinematic Angles.........................................................................98 & e- x* E* o: w; {. u
  2.6.5   Example 2.4 ...............................................................................100 # }7 w8 }2 L' o
2.7   Avalanched Representation of the Cutting Tool Geometry  $ r- F  L- Q, m1 ]
in T-hand-S............................................................................................102
1 }9 P/ a) `7 B& F6 z- `4 h 2.7.1  Basic Tool Geometry .................................................................102
& V& z% s' ?3 B; B6 S$ @. c2.7.2   Determination of Cutting Tool Angles Relation
* ^6 D3 b: n. e8 w6 U$ Q  for a Wiper Cutting Insert ..........................................................108 5 D5 J8 t5 h4 V
  2.7.3   Determination of Cutting Tool Angles  
9 X2 {' B8 M* c6 k   for a Single-point Tool ...............................................................110
5 ?/ t: T( i1 v- i- V  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117 5 m) B# j# j% {' g
  2.7.5   Summation of Several Motions..................................................119
3 {3 |; E5 \) P& u  k6 b$ R: Y7 NReferences......................................................................................................125
  Z, u: k5 k. t- [' T0 b, Y1 N3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127
" s/ `4 e/ R2 F; k5 F% W& W3.1   Introduction ...........................................................................................127
/ @* l* o  h5 v& @. ^' F9 [) U3.2   General Considerations in the Selection of Parameters  3 x5 c6 }% _2 u9 U% p1 q
  of Cutting Tool Geometry .....................................................................129
$ W  t- j! e4 [8 c4 _% p/ B8 H& s 3.2.1 Known Results .............................................................................129 0 g) P9 z. p" J; r, |% {+ S
  3.2.2 Ideal Tool Geometry and Constrains............................................130 6 E) R, K" a* Y3 F3 Q, v7 N
  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132 , f6 }  ~" T! |$ N7 i/ M
3.3   Tool Cutting Edge Angles .....................................................................132
& {0 `% d0 O$ l: p1 {; K 3.3.1  General Consideration................................................................132 : R/ u' D, F. Y" r9 H
  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134
7 T7 M$ F9 s* R* p0 Q) h  3.3.3   Influence on the Surface Finish..................................................142 ( }6 r" F8 r3 q, Q
3.3.4  Tools with κr > 90°.....................................................................144 7 c; R; z3 h  Q4 \
  3.3.5   Tool Minor Cutting Edge Angle ................................................147 # s0 O7 m( U# n: M+ |( H
3.4.  Edge Preparation ...................................................................................161 + S% P% J2 e/ {1 v
3.4.1  General .......................................................................................161 + h9 A0 q, i% \* Y0 j
  3.4.2   Shape and Extent........................................................................163 % ~# L' `, d8 f- D0 Y
3.4.3  Limitations .................................................................................163 & Q# y5 [  u2 B4 A3 p; h& H1 ]
  3.4.4   What Edge Preparation Actually Does.......................................169
1 e  N- X1 e- p3.5   Rake Angle............................................................................................171
8 C+ w- j2 ^: \% e6 Z 3.5.1  Introduction................................................................................171
# M! O& M% c( L* Z" h, L  3.5.2   Influence on Plastic Deformation and Generazliations ..............175
, ^, K4 R* R5 H) T  3.5.3   Effective Rake Angle .................................................................183 " r4 p6 ~0 Y2 }6 ~
  3.5.4   Conditions for Using High Rake Angles....................................189 2 u5 P! d: }; V) k  A. j: Z! e6 E
3.6   Flank Angle ...........................................................................................191 6 k4 W% K5 ^$ {# `+ i
3.7   Inclination Angle...................................................................................193
6 \( p$ o# e; V" m      3.7.1   Turning with Rotary Tools.........................................................195
; \7 @+ P- ]- W" T1 g- o 3.7.2  Helical Treading Taps and Broaches..........................................197 4 K) o" b6 R7 |+ k
3.7.3  Milling Tools..............................................................................198 + _% W9 v5 v$ u8 }, @2 o  r
References......................................................................................................201 7 D' _! [: E- }, e% j0 E0 @
4   Straight Flute and Twist Drills ...................................................................205 6 S! @% ]2 J* t' E7 [
4.1   Introduction ...........................................................................................205
/ C( X2 p1 Z+ l: N3 ^1 Z$ e4 a4.2   Classification.........................................................................................206 0 T/ s! ~7 m2 D9 z7 Z) z) W
4.3   Basic Terms...........................................................................................208   `2 K9 s1 u; N; D9 ~
4.4   System Approach ..................................................................................211 $ ~" A: {0 o/ ]1 z7 A
4.4.1  System Objective .......................................................................212 ; x, ^" L4 y9 F! C2 F, ^
4.4.2  Understanding the Drilling System............................................212
+ Q6 M0 W1 \- ~  Y  4.4.3.  Understanding the Tool..............................................................212
! g$ e: N$ Q% i+ A' ~& |4 |7 D) n( w4.5.  Force System Constrains on the Drill Penetration Rate ........................213
, z" Q3 Q% K/ ]# c; j* v$ x+ z  4.5.1   Force-balance Problem in Conventional Drills ..........................213
/ s# M# Z8 D( G. L/ R0 J4 O; |  4.5.2   Constrains on the Drill Penetration Rate....................................218
; ?$ H3 K1 W; A; p5 T3 B 4.5.3  Drilling Torque ..........................................................................219   L4 T- I0 P  z* _& D
4.5.4  Axial Force.................................................................................220
  a9 c5 L- z4 ]/ S  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221
& L3 A5 X& s8 Q. i4.6   Drill Point ..............................................................................................223
. t7 Q1 T9 U0 v: B) m 4.6.1  Basic Classifications ..................................................................223 8 O( E2 N  E# J# k2 U( B
  4.6.2   Tool Geometry Measures to Increase the Allowable  
9 r% \+ [/ x$ P4 r! R Penetration Rate ....................................................................................224
- E; \: v6 [6 @9 L+ B4.7   Common Design and Manufacturing Flaws..........................................259 . T1 w! ?  U2 ~3 f$ i0 l' m
  4.7.1   Web Eccentricity/ Lip Index Error.............................................260
, t  Q/ ~+ g1 b) p# [+ {3 L  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261 8 T9 p; @( }* I) Y
4.7.3  Coolant Hole Location and Size.................................................263
' m1 `/ A9 t2 q" f- x8 `4.8   Tool Geometry ......................................................................................267
$ G$ V9 h* F% `; Z0 u  4.8.1   Straight-flute and Twist Drills Particularities............................269 ) @7 y; J' w" Z4 f$ Z8 ]6 m$ N
  4.8.2   Geometry of the Typical Drill Point ..........................................270
1 _9 `7 U  c5 w5 |  4.8.3   Rake Angle.................................................................................272 ( ~! z0 j6 {1 Z" \9 n! h2 A
  4.8.4  Inclination Angle .........................................................................280
7 e# `2 t4 T2 ~: x/ d' ~( h' j 4.8.5  Flank Angle................................................................................281
: i" N, Q) n; X. f& v3 u  4.8.6   Geometry of a Cutting Edge Located at an Angle  
; ~8 r/ I& K% D( j3 J/ w   to the y0-plane ............................................................................292
. Y) O0 i" N/ H- C+ q  m3 F7 Q 4.8.7  Chisel Edge ................................................................................295
7 ?0 N2 m9 Z6 e9 ?3 n+ ^  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306 & b1 X  o; l1 R: T
  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310
; L5 g5 v* A: `6 @3 u6 i% u4 `+ R 4.8.10  Flank Formed by Quadratic Surfaces.........................................313 ' s1 w( |5 d$ A/ y# s6 n
4.9   Load Over the Drill Cutting Edge .........................................................324
' M1 W6 ]! ]' s# W   4.9.1   Uncut Chip Thickness in Drilling ..............................................325
/ e: N+ _# `& C  Y  4.9.2   Load Distribution Over the Cutting Edge ..................................327 ; h9 p7 a% H9 L" Z' S
4.10  Drills with Curved and Segmented Cutting Edges ................................328
/ l2 S4 |3 D4 i0 q. `/ N1 x, o  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329
( s- g6 @, F3 {/ f* M  4.10.2 Rake Angle.................................................................................332 5 ]& \8 ~9 W& N" V4 @
References......................................................................................................337 " Z6 I* z  B' l5 t" k2 C! v* T
5   Deep-hole Tools............................................................................................341
5 y1 H& w7 P, P/ T! x5.1   Introduction ...........................................................................................341
- |7 U6 d7 ^+ x9 s; _+ k) P2 C5.2   Generic Classification of Deep-hole Machining Operations.................343 7 J! H* p2 y5 X( l- c) C
5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345
% t+ R* O- D: X( D  5.3.1   Force Balance in Self-piloting Tools..........................................345
. \6 M. ?+ z+ ]! @/ e9 {5.4   Three Basic Kinematic Schemes of Drilling .........................................350 + [* ~- x% j% p- m/ ~" ^. D
  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351 % k3 J) N( S) |$ L5 L
5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352
5 F2 K3 V+ G$ q) L" t9 @0 f- j/ i 5.4.3  Counterrotation ..........................................................................352 ) E% c" T: A; G- P
5.5   System Approach ..................................................................................353
% n$ J/ p* U; r# N  5.5.1   Handling Tool Failure ................................................................353
: O' e3 G8 X' M' H 5.5.2  System Considerations ...............................................................354 + [) \% L" j7 [3 t
5.6   Gundrills................................................................................................362 # J0 K) a7 ^! w! @% i
5.6.1  Basic Geometry..........................................................................362
  T- L4 n, k/ X3 S7 ] 5.6.2  Rake Surface ..............................................................................365 # @1 I3 P, m( n# t
  5.6.3   Geometry of Major Flanks .........................................................370
3 I1 D1 x+ ~' [0 e% s" }4 k 5.6.4  System Considerations in Gundrill Design ................................390
0 S! e$ J6 V% u8 O, s5.6.5   Examplification of Significance of the High MWF Pressure 0 f* \' w! O% _+ H! ?2 v+ E
  in the Bottom Clearance Space ..................................................423 ; c; B* e2 q& e1 S( }- p
  5.6.6   Example of Experimental Study ................................................425 * p5 T8 P( @7 ?# _+ b' ^
  5.6.7   Optimization of Tool Geometry.................................................439 8 u) k* k$ Y9 E/ u
References......................................................................................................440 ) N- y2 e3 Z5 d  V; j3 i
Appendix A  ( t. l2 h$ N+ }7 Y3 l; J5 ~0 h
Basic Kinematics of Turning and Drilling.......................................................443
1 v" B$ ?9 d+ dA.1   Introduction ...........................................................................................443
$ w6 {; w% d5 j+ n  M& W2 oA.2  Turning and Boring ...............................................................................444 9 ^9 R, F4 S* x7 G8 F; T& ]$ P
  A.2.1  Basic Motions in Turning...........................................................444 ) P. ^6 x8 s6 U1 }  [% I! N; [
  A.2.2  Cutting Speed in Turning and Boring ........................................448
( j' J2 w. P7 U' m9 \  A.2.3  Feed and Feed Rate ....................................................................448 ( _; o. j, p3 n0 H4 O
  A.2.4  Depth of Cut...............................................................................449
# ^- E. y* S  J  d A.2.5  Material Removal Rate ..............................................................449 4 v5 [; {9 z9 U" r/ U: j$ [5 _9 U
A.2.6  Resultant Motion........................................................................450
# o, J# P; R5 kA.3  Drilling and Reaming ............................................................................450 1 k! V. j! ?! [
A.3.1  Basic Motions in Drilling...........................................................450 ' A+ s* H' @  e% F- Q# S9 E
A.3.2  Machining Regime.....................................................................451
# i5 ?2 [$ ^" ^& |! I& M- G% K4 [: d: ~A.4  Cutting Force and Power .......................................................................453
5 X$ O( K) |# a( i' C  A.4.1  Force System in Metal Cutting...................................................453
9 Q5 B- r& @7 X( T5 Q, p  A.4.2  Cutting Power ............................................................................454
4 v7 i+ C$ N" Z8 t* m3 F7 o A.4.3  Practical Assessment of the Cutting Force.................................455
& Q2 t7 a  n) R$ YReferences......................................................................................................461
* q0 a( t1 g0 y) t# F5 e+ T9 y+ B$ VAppendix B  % h2 d+ O) M" b( D. ^# x' N
ANSI and ISO Turning Indexable Inserts and Holders.................................463
3 H3 A' W8 x7 r1 C5 |B.1   Indexable Inserts ...................................................................................463
+ q" i7 b, q  j! X) O5 Y  B.1.1  ANSI Code .................................................................................464 7 Y& P% D! r/ N6 @0 S% ]9 Y
B.1.2  ISO Code....................................................................................471
3 r9 }' x( s4 @# O  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491 8 U' [" d- |8 r! W- b( o
  B.2.1   Symbol for the Method of Holding Horizontally Mounted  * k9 l4 s7 i+ @3 a$ L* `4 X3 f
Insert – Reference Position (1) ..............................................................492
8 a2 e% E- y! T  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493
- R8 I8 L- M) H% i# S  p+ m  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493
' Y+ @; r' q* Z7 ?- n" I1 B  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  * D! C$ P/ r  R% x3 s: a) f' h
   Reference Position (4)................................................................494 & O5 J! @% F. ]7 i4 c( ^7 R" F/ _
  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494 / L% A/ H1 X2 w. D$ G
  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  
; |( O/ x) L$ [7 a3 X    and Height of Cutting Edge) - Reference Position (6) ...............494
2 u4 O6 G6 ?: ~$ k  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  6 o& O5 G/ b! ]' N, ?$ ]! Y
   Reference Position (7)................................................................495
# N8 X$ s7 S6 v' E  B.2.8  Number Symbol Identifying Tool Length –  
7 D" F7 P$ @8 I4 l4 F   Reference Position (8)................................................................495
' I- D+ O4 y" N4 y  B.2.9   Letter Symbol Identifying Indexable Insert Size –  : ~0 f: C' `2 D4 V
   Reference Position (9)................................................................497 " y1 X( n- b6 S& \# Z* Q
Appendix C  ! f: _3 Q7 ~  r% T! C2 e- i6 k6 U
Basics of Vector Analysis ..................................................................................499
) I. g5 v9 E# l, N" TC.1   Vectors and Scalars ...............................................................................499 # n- z. q/ u+ P2 `9 e" _$ l
C.2   Definition and Representation...............................................................500
+ X3 Y! H2 C& `' {9 Q8 K C.2.1  Definitions..................................................................................500 % |, m6 M) [% v) c/ S$ @
C.2.2  Basic Vector Operations ............................................................503
! m7 s8 M; A) }& [3 IC.3   Application Conveniences.....................................................................509
" w- i, N& N4 y! AC.4  Rotation: Linear and Angular Velocities...............................................511 2 y% z' ~2 m7 F& L1 |, l9 a5 M5 s
  C.4.1   Planar Linear and Angular Velocities ........................................511 ' f/ G0 u0 Z: {7 \0 J1 W
  C.4.2   Rotation: The Angular Velocity Vector .....................................515
$ [% B, V3 K- }9 D& v8 V1 z! W1 vReferences ...........................................................................................................518
4 ^1 w, B/ U# e6 G% OAppendix D  
+ E- t) p' R7 I. ^4 Y! |3 t; RHydraulic Losses: Basics and Gundrill Specifics............................................519
( ~+ J2 Z# w; G, K+ M2 g1 tD.1  Hydraulic Pressure Losses – General ....................................................519 ! Y. ]1 _+ d9 h* l: j5 P
D.1.1  Major Losses: Friction Factor ....................................................520
/ w8 [( Q& D3 x3 e1 V  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521
7 u- y, A4 J( F' m; \ D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521
* t1 v: M2 p, R! R  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522
% m! C5 }1 B/ @4 H1 j% l5 _  D.2.3  Example D.1...............................................................................527 - ]4 g% f9 a, J- G- G# o. D1 A
D.3   Inlet MWF pressure...............................................................................528
/ F2 f3 c- g9 P9 AD.4  Analysis of Hydraulic Resistances ........................................................532
( U* L0 x* i3 X! t4 ~& E- [( L! ]/ ?1 ~  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  
# Q: ]4 k. r6 M    Has No or Little Control ............................................................532
- D+ J% p+ C+ E2 D# J7 [  D.4.2  Variable Resistances Over Which the Designer Has Control ....535
' `% i, b0 v1 R/ l& h$ JD.5   Practical Implementation in the Drill Design ........................................539 9 b/ ?" a& k; G5 @2 Y$ g
References ..........................................................................................................543
; X4 S* Y/ c6 M% w- e1 {Appendix E 6 X# h) N+ X/ p0 s  t. t! ]" d
Requirements and Examples of Cutting Tool Drawings................................545
4 w4 n' K$ |. S. CE.1   Introduction ...........................................................................................545 6 `( w8 T( h+ N2 V( |% K; O9 W+ Y
E.2   Tool Drawings – the Existent Practice ..................................................546
! S0 O7 u" ^6 i3 J% k" DE.3   Tool Drawing Requrements ..................................................................548 " L! J, J; g/ n8 X* t% y
E.4   Examples of Tool Drawing ...................................................................553
, c9 L- H* g+ O( mReferences ..........................................................................................................559 1 w& [* t8 w$ k3 ]  X5 a
Index…………………………………………………………………………….561 4 F. E2 N. R4 ^/ v9 C1 K1 F/ }8 [

, i- A' ~5 w* i( F  d( k + ~2 n! f0 k) r( i* c& k# J; Y
5#
發(fā)表于 2011-6-25 13:07:50 | 只看該作者
都是些神馬,?
6#
發(fā)表于 2011-6-25 13:33:41 | 只看該作者
埋頭挖礦中。。,。,。。,。,。。,。
7#
發(fā)表于 2011-6-26 15:14:56 | 只看該作者
好東西啊。,。,。只是,刀具不是我的工作,。,。。頂起,,不沉,。。,。
8#
 樓主| 發(fā)表于 2011-6-26 18:10:54 | 只看該作者
專業(yè)人士自有看法,。
9#
發(fā)表于 2011-6-27 18:42:38 | 只看該作者
好東西啊,英文的,,看著太費勁了
10#
發(fā)表于 2011-6-27 21:53:22 | 只看該作者
從網(wǎng)上查找這本書是Springer Series in Advanced Manufacturing叢書中的一本. Z+ [' B. s0 R  W
請問這套叢書共包含哪幾本書
您需要登錄后才可以回帖 登錄 | 注冊會員

本版積分規(guī)則

小黑屋|手機版|Archiver|機械社區(qū) ( 京ICP備10217105號-1,京ICP證050210號,,浙公網(wǎng)安備33038202004372號 )

GMT+8, 2025-4-26 13:02 , Processed in 0.072129 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回復(fù) 返回頂部 返回列表