七七影院色七七_免费观看欧美a一级黄片_亚洲综合久久久久久中文字幕_国产999999在线视频免费观看,国产小视频无码,国产精品亚洲日日摸夜夜添,女人高潮潮叫免费网站,久久影院国产精品,日韩成人在线影院,欧美囗交XX×BBB视频,色在线综合高清

機(jī)械社區(qū)

 找回密碼
 注冊(cè)會(huì)員

QQ登錄

只需一步,,快速開(kāi)始

搜索
查看: 8150|回復(fù): 19
打印 上一主題 下一主題

Geometry_of_Single_point_Turning_Tools_and_Drills

[復(fù)制鏈接]
跳轉(zhuǎn)到指定樓層
1#
發(fā)表于 2011-6-23 22:58:22 | 只看該作者 回帖獎(jiǎng)勵(lì) |倒序?yàn)g覽 |閱讀模式
本帖最后由 機(jī)器鼠 于 2011-6-23 23:18 編輯
8 ~1 T0 o* L+ B& \8 s; `1 {+ I& u" A! v4 c( I5 j+ ?- b
Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf5 d8 p6 F# m: t
有要的嗎?刀具,細(xì)節(jié),很到位,。英文版。  h: {9 G) P, Z$ j8 N
國(guó)內(nèi)無(wú)人這么細(xì)研究的吧,?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 閱讀權(quán)限: 90, 下載次數(shù): 8, 下載積分: 威望 -10 點(diǎn)

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下載次數(shù): 7, 下載積分: 威望 -10 點(diǎn)

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下載次數(shù): 8, 下載積分: 威望 -10 點(diǎn)

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下載次數(shù): 6, 下載積分: 威望 -10 點(diǎn)

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下載次數(shù): 6, 下載積分: 威望 -10 點(diǎn)

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下載次數(shù): 6, 下載積分: 威望 -10 點(diǎn)

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 閱讀權(quán)限: 90, 下載次數(shù): 7, 下載積分: 威望 -10 點(diǎn)

1

2#
發(fā)表于 2011-6-24 19:17:16 | 只看該作者
說(shuō)什么的,?
3#
 樓主| 發(fā)表于 2011-6-24 22:02:25 | 只看該作者
Although almost any book and/or text on metal cutting, cutting tool design, and 4 n3 z  |; j6 o
manufacturing process discusses to a certain extent the tool geometry, the body of 4 b6 s0 s+ }/ V* Z2 b0 F, Y
knowledge on the subject is scattered and  confusing. Moreover, there is no clear
$ F$ v. d. O9 w! f  u" qobjective(s) set in the selection of the tool geometry parameters so that an answer ' ?' ?4 a- l, {2 f9 _
to a simple question about optimal tool geometry cannot be found in the literature
* M% ]5 i) Z5 V8 u% ^- q. t% M& m2 ~on the subject. This is because a criterion (criteria) of optimization is not clear, on $ I2 w3 Z9 x3 _: e# a
one hand, and because the role of cutting tool geometry in machining process
( K; |9 a5 l/ P# Noptimization has never been studied systematically, on the other. As a result, many
8 ]" B2 a  x4 Q6 Gpractical tool/process designers are forced to use extremely vague ranges of tool
* p$ l( y7 G; }$ K4 s) b2 {6 g* ]2 Ggeometry parameters provided by handbooks. Being at least 20+ years outdated, 7 K9 l2 k" Z" ?8 m
these data do not account for any particularities of a machining operation including
& W- m% r2 a3 Z. }( @" la particular grade of tool material, the condition of the machine used, the cutting
1 R3 z. Q. G- B, m+ m4 nfluid, properties and metallurgical condition of the work material, requirements to
- A1 p, O* i8 [# L8 \the integrity of the machined surface, etc. ! B4 ]3 w( P& F1 T# {" ^) g) n: T
Unfortunately, while today's professionals, practitioners, and students are
( p/ ^; u2 x  R0 }& S0 T9 jinterested in cutting tool geometry, they are doomed to struggle with the confusing 3 U# J# x" M* i) N& m
terminology. When one does not know what the words (terms) mean, it is easy to & S6 t5 E/ R, d% g+ {: G
slip into thinking that the matter is difficult, when actually the ideas are simple, ) G; O' u6 C: N) V
easy to grasp, and fun to consider. It is the terms that get in the way, that stand as a 1 J2 D" L6 o- H+ n" L
wall between many practitioners and science. This books attempts to turn those
* C4 q, V* V( e. ]* b  i$ iwalls into windows, so that readers can peer in and join in the fun of proper tool
8 T" W- y. B0 ?5 m6 kdesign. 7 \4 ~, U& z% }' _  P8 w* }
So, why am I writing this book? There are a few reasons, but first and foremost, 8 `& o- n+ |4 I. o
because I am a true believer in what we call technical literacy. I believe that
  ?9 o' Q6 y/ J* J' W. q3 feveryone involved in the metal cutting business should understand the essence and
) u1 s% M$ L" U& m$ W' L: Himportance of cutting tool geometry. In my opinion, this understanding is key to ( `: }& q4 u1 y' X7 U
improving efficiency of practically all machining operations. For the first time, this
, c* ^, X$ H" l4 y. Abook presents and explains the direct correlations between tool geometry and tool
: ?! [& y, f, ^0 W; a) K! F6 _performance. The second reason is that I felt that there is no comprehensive book
% d4 \3 k/ i! c( n! Fon the subject so professionals, practitioners, and students do not have a text from ! V# `0 o( [6 y* v# G) P- N) L2 B
which to learn more on the subject and thus appreciate the real value of tool
# z4 W& H6 v1 _! w! s# i6 g  Bgeometry. Finally, I wanted to share the key elements of tool geometry that I felt 0 p7 y* j+ S% F" S
were not broadly understood and thus used in the tool design practice and in
9 [( `6 _' \2 E( woptimization of machining operations in industry. Moreover, being directly % Y5 N  m& g: m7 X" C
involved in the launch of many modern manufacturing facilities equipped with 5 J5 f' A6 a+ |, f9 [
state-of-the-art high-precision machines, I found that the cutting tool industry is not
6 P' ^' Y. N' y" y3 zready to meet the challenge of modern metal cutting applications. One of the key
2 N* S- ?$ q$ Z1 lissues is the definite lack of understanding of the basics of tool geometry of ' Z0 Z/ s1 e  h3 _2 O0 a/ ]& W
standard and application-specific tools.
8 T6 X8 I1 k8 H% I2 e- ]The lack of information on cutting tool geometry and its influence on the ) E: M7 o1 F* W8 i9 @
outcome of machining operations can be explained as follows. Many great findings
/ `: S. O/ `4 v' T" ^/ N3 N& J! F! uon tool geometry were published a long time ago when neither CNC grinding ' `! c& m* r' Z% {5 g
machines capable of reproducing any kind of tool geometry were available nor . A4 {1 ^+ h9 n# l2 Q# Y- B
were computers to calculate parameters of such geometry (using numerical 9 m  n. x# t* q9 F! \
methods) common. Manual grinding using standard 2- and 3-axis simple grinding 2 X: A  p( _  p: I4 ^3 h6 K: C
features was common so the major requirement for tool geometry was the simpler
8 S: \: h3 u$ Mthe better. Moreover, old, insufficiently rigid machines, aged tool holders and part
0 P4 k( t, x* z1 ?fixtures, and poor metal working fluid (MWF) selection and maintenance levered 9 _& N. I: M1 E* n* C8 Z
any advancement in tool geometry as its influence could not be distinguished under
1 [% H# o' g6 Y. ?5 Y9 k5 Vthese conditions. Besides, a great scatter in the properties of tool materials in the
3 |% O% G4 |" [  @' s$ Qpast did not allow distinguishing of the true influence of tool geometry. As a result, 7 x5 ]- c5 P- h$ l) e" f7 U3 K  A
studies on tool geometry were reduced to  theoretical considerations of features of
) \3 n" s9 ]! k% |; [9 o" Xtwist drills and some gear manufacturing  tools such as hobs, shaving cutters, ' e$ x0 n% J( P- a4 }1 n% \
shapers, etc.  5 ?- O2 ?( u# c
Gradually, once mighty chapters on tool geometry in metal cutting and tool 4 S" l0 L/ l6 s8 K
design books were reduced to sections of few pages where no correlation between
5 _* P$ o/ U$ |( q! Mtool geometry and tool performance is normally considered. What is left is a
, Y) F2 v: x1 p4 I- y' K1 [general perception that the so-called “positive geometry” is somehow better than
8 Q) Y! u3 ^9 X3 ?“negative geometry.” As such, there is no quantitative translation of the word 3 b1 E* a" G' V/ g; M2 z
“better” into the language  of technical data although a great number of articles 7 b* S+ ?; H4 s
written in many professional magazines discuss the qualitative advantages of 5 @$ z  e7 e  f
“positive geometry.” For example, one popular manufacturing magazine article
, M5 F. q) @$ N* C6 N2 Z1 Zread “Negative rake tools have a much  stronger leading edge and tend to push ( I1 ?$ z. U' ~, y
against the workpiece in the direction of the cutter feed. This geometry is less free
/ M+ c% u& X; `5 m1 {cutting than positive rakes and so consumes more horsepower to cut.” Reading
8 w' F, }+ m" ]$ f2 }- v+ a6 Othese articles one may wonder why cutting tool manufacturers did not switch their 7 L; a2 I6 G" o+ M
tool designs completely to this mysterious “positive geometry” or why some of % F, [) d. Q2 H& j% B
them still investigate and promote negative geometry. 9 l( j  W& g. z2 R' D
During recent decades, the metalworking industry underwent several important
0 g. R! |/ P6 @changes that should bring cutting tool geometry into the forefront of tool design 6 w* j' F" ^' n# h; V4 S3 c  a6 O! }
and implementation:
4#
 樓主| 發(fā)表于 2011-6-24 22:03:42 | 只看該作者
1   What Does It Mean “Metal Cutting”? ...........................................................1 $ _8 H2 p' s5 }2 q5 }9 ?0 \
1.1   Introduction ...............................................................................................1 2 {1 Q6 e0 F" s: E  U: D5 n
1.2   Known Results and Comparison with Other Forming Processes ..............2
; {* w3 `/ k2 J* d  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2
2 D  T/ A- b4 I0 Y+ E& J  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  
1 n  {$ ~1 Y- O1 x- ~* Q Operations .................................................................................................5
) ^8 |: Q* _1 l7 F" X1 i1.3   What Went Wrong in the Representation of Metal Cutting?...................22
8 |% s0 K2 E- U/ I9 m& n  1.3.1   Force Diagram..............................................................................23
/ b6 l' G( R4 V3 C( `  1.3.2   Resistance of the Work Material in Cutting.................................25
( F. }4 t+ u- I1 y; [: Z' N  1.3.3   Comparison of the Known Solutions for the Single-shear  
1 H# C$ y8 ?1 J; E: Z; ^  Plane Model with Experimental Results .................................................27 7 ?9 h* E* r5 l" g4 N, Z/ e
1.4   What is Metal Cutting?............................................................................28
# c* O$ w5 l$ r  1.4.1   Importance to Know the Right Answer........................................28
1 C) [/ y5 v+ m! c9 E$ L0 E# }% X& O: P6 [ 1.4.2  Definition .....................................................................................28
, I3 p8 [- S- l+ K+ Z* Y6 q  1.4.3   Relevance to the Cutting Tool Geometry.....................................29
2 L! o0 B& T- u* {1.5   Fundamental Laws of Metal Cutting.......................................................32
2 Z4 m- c* E0 F& C; ]1 k* Y$ }; Q# }6 D9 F  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32
  y: ~% `) s2 A) s; S# [$ H) P 1.5.2  Deformation Law.........................................................................35
5 W% }$ Z0 F& qReferences........................................................................................................50 ( `. S2 I, ?' G! k" e0 h9 }* E: b
2   Basic Definitions and Cutting Tool Geometry,  8 q! u0 F* z0 q6 A8 \0 {& d: @* t6 M
Single Point Cutting Tools ............................................................................55 ' y% ?0 N( v* z3 [4 w; A' r1 }
2.1   Basic Terms and Definitions ...................................................................55 ! o9 u2 W, B0 K
2.1.1  Workpiece Surfaces.......................................................................57 3 f% ?+ L2 l3 }! G. m1 Y  H
2.1.2  Tool Surfaces and Elements ..........................................................57
% J6 ~! `9 @" A- v+ c 2.1.3  Tool and Workpiece Motions.......................................................57
; |$ U- e- t4 P" {1 W( ?9 S 2.1.4  Types of Cutting ............................................................................58 ' t/ Q2 `/ c) l, B+ u, R7 e
2.2   Cutting Tool Geometry Standards...........................................................60 / p4 T0 M9 Y. R2 k
2.3   Systems of Consideration of Tool Geometry ..........................................61 4 r4 e( n5 v+ D" ?
2.4.  Tool-in-hand System (T-hand-S) .......................................................64* ^" Y% Q% F1 M/ D- W
  2.4.1   Tool-in-hand Coordinate System.................................................64 " b* {3 N; H- v1 [5 Y4 L
2.4.2  References Planes ........................................................................66 ( C5 M# m- X0 M3 U4 I
2.4.3  Tool Angles..................................................................................68 : @- u5 E- l2 W! J
  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74 " w) s* W; l: D6 K7 M, V; H
2.5   Tool-in-machine System (T-mach-S)......................................................84 ; i9 G- g1 J6 \4 x0 a7 R
2.5.1  Angles ..........................................................................................84 - D4 f! j4 F% K$ k4 k
  2.5.2   Example 2.3 .................................................................................88
, n, N% W) ~: A! g8 M4 ?2.6   Tool-in-use System (T-use-S) .................................................................90
; r7 H- r) w1 P9 ` 2.6.1  Reference Planes ..........................................................................91
8 z  a2 ?& {% ^1 T/ s$ o1 Z5 n% k 2.6.2  The Concept .................................................................................92
3 z) |7 V* f: J  2.6.3   Modification of the T-hand-S Cool Geometry .............................92
; j$ O2 s5 _5 k: J4 t  2.6.4   Kinematic Angles.........................................................................98
* A& V/ m. T3 y$ p* J  2.6.5   Example 2.4 ...............................................................................100 9 c1 Y: Y. U' }2 Q: k( R2 p3 u
2.7   Avalanched Representation of the Cutting Tool Geometry  
* K: }: B, h, L2 @: N3 Q in T-hand-S............................................................................................102 ! ?6 W8 r- H% H0 Y4 k( ^& _
2.7.1  Basic Tool Geometry .................................................................102 2 y( ^. |( e4 N" A/ @. K* E; {
2.7.2   Determination of Cutting Tool Angles Relation + N. o  q9 h( j0 x' L) X
  for a Wiper Cutting Insert ..........................................................108 & r4 Y6 L+ n( u+ b
  2.7.3   Determination of Cutting Tool Angles  
; }5 G( Y0 I- x6 z% P( @% N   for a Single-point Tool ...............................................................110
* z9 J& l, q: h  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117 2 B4 U/ E5 g. K* E$ R2 }+ [6 }
  2.7.5   Summation of Several Motions..................................................119 # U% e7 H( E( v
References......................................................................................................125
% |% ~7 V# W' J" o3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127
8 a) y3 H9 ]$ o* i3.1   Introduction ...........................................................................................127
8 ~; a6 A0 c# Q! e- @8 [! M1 n3.2   General Considerations in the Selection of Parameters  3 f  \) u, Z6 G* t
  of Cutting Tool Geometry .....................................................................129 & r1 o+ s( l- t; Y* n' k' U
3.2.1 Known Results .............................................................................129 & c1 c# |; B) k( g9 {. X# T4 V
  3.2.2 Ideal Tool Geometry and Constrains............................................130
, M( a3 }) j) @0 T- r  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132
+ }2 u  F# L& w+ c( K7 g1 U3.3   Tool Cutting Edge Angles .....................................................................132
0 ]  D* i, e/ U8 A  i1 M( B 3.3.1  General Consideration................................................................132 ! }. Y! N* A7 A2 ?" g0 s) L
  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134
6 a! A/ n' ~, o" l  3.3.3   Influence on the Surface Finish..................................................142
9 U" ?' D4 Z9 d  z) s 3.3.4  Tools with κr > 90°.....................................................................144 % U- \" i: @/ t& k) l5 u
  3.3.5   Tool Minor Cutting Edge Angle ................................................147
* E3 ]+ K3 R1 ~3.4.  Edge Preparation ...................................................................................161 3 P+ p. C0 n( p' ?% S- n! J
3.4.1  General .......................................................................................161
- w; ~( ]* f; n5 i4 r* q2 X  3.4.2   Shape and Extent........................................................................163
0 v+ `0 e( S7 v* R5 z 3.4.3  Limitations .................................................................................163   M6 e+ D" a: Z0 a/ S2 T5 a6 d
  3.4.4   What Edge Preparation Actually Does.......................................169
* |5 W8 F- b) s$ @- u0 y3.5   Rake Angle............................................................................................171
9 I! `' z* {+ F" N7 r& W 3.5.1  Introduction................................................................................171
7 V3 k7 H: B6 S; ?  3.5.2   Influence on Plastic Deformation and Generazliations ..............175 ( [5 `+ X' }" Q- ]  I: {5 s
  3.5.3   Effective Rake Angle .................................................................183
8 v6 r6 M) g5 q5 `% M  3.5.4   Conditions for Using High Rake Angles....................................189
4 {9 q- P! ]" C: d3.6   Flank Angle ...........................................................................................191 % Z" X! v; \* E/ _. h5 P: n4 `
3.7   Inclination Angle...................................................................................193 0 R7 P) a. C' o3 y' e/ G% V
      3.7.1   Turning with Rotary Tools.........................................................195 8 V+ C# a$ B1 q. ]6 Z
3.7.2  Helical Treading Taps and Broaches..........................................197 " g/ M( R( Y+ D# t" q
3.7.3  Milling Tools..............................................................................198 5 p& _' b/ r% N* P
References......................................................................................................201 . v8 S$ w$ I4 L* x: c7 v2 k
4   Straight Flute and Twist Drills ...................................................................205
/ X" k2 h' l# F( r4.1   Introduction ...........................................................................................205 # r) j2 a$ @  j; Z/ Q5 R
4.2   Classification.........................................................................................206
: _* i3 d* S  J4.3   Basic Terms...........................................................................................208 * o; g  n4 C7 @) Q' W# Q1 \
4.4   System Approach ..................................................................................211
% F) x! i% a1 A2 u8 @. {0 t6 N 4.4.1  System Objective .......................................................................212
% \1 R" T- y: {# N  u 4.4.2  Understanding the Drilling System............................................212
5 V3 u, V" p, f5 y7 }  4.4.3.  Understanding the Tool..............................................................212
1 V+ P4 M% h8 }; v# v/ y4.5.  Force System Constrains on the Drill Penetration Rate ........................213 9 {' A" n2 H" w$ ?* {# }2 U
  4.5.1   Force-balance Problem in Conventional Drills ..........................213
0 q; r2 N& {( Z/ i  4.5.2   Constrains on the Drill Penetration Rate....................................218 , O9 J! A5 ^6 j* L. r' F
4.5.3  Drilling Torque ..........................................................................219
2 i7 y) Q+ Z: P) o 4.5.4  Axial Force.................................................................................220
. t! h* d- p. [& D  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221 8 V& w9 U# S( F$ Z9 ~( }9 F
4.6   Drill Point ..............................................................................................223 , U5 k1 }& M2 H2 _% Q( C! m& G% U
4.6.1  Basic Classifications ..................................................................223 1 u% W' U0 u' W& b7 P$ ]8 f
  4.6.2   Tool Geometry Measures to Increase the Allowable  6 B6 H9 L! E4 C5 e1 @/ W) ]
Penetration Rate ....................................................................................224 * D4 p8 s6 q6 l' d& F$ O0 w$ s4 z
4.7   Common Design and Manufacturing Flaws..........................................259
$ a* y, s+ R! l; G- r  4.7.1   Web Eccentricity/ Lip Index Error.............................................260 , F. `& `) h' f/ _7 L7 {" n7 S
  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261
6 ]8 A9 e( m7 [  R' J; K9 o 4.7.3  Coolant Hole Location and Size.................................................263
3 ]+ X7 v# ^) c+ |  V4.8   Tool Geometry ......................................................................................267 8 x( {6 f1 D: z/ z* W
  4.8.1   Straight-flute and Twist Drills Particularities............................269 ' d& W1 d! K1 _. [
  4.8.2   Geometry of the Typical Drill Point ..........................................270
' h! x1 v8 e1 D; _0 _5 {  4.8.3   Rake Angle.................................................................................272   {) \" g5 @9 a1 M' P# }* F2 X
  4.8.4  Inclination Angle .........................................................................280
1 H7 A. `" w. l4 _$ H/ J& k 4.8.5  Flank Angle................................................................................281
- \* e* G: ]# t: y# n1 V4 G  4.8.6   Geometry of a Cutting Edge Located at an Angle  4 ?8 r: s% p5 I) E, G9 y9 h
   to the y0-plane ............................................................................292
1 o* d3 e" l+ \1 [ 4.8.7  Chisel Edge ................................................................................295 3 ]% c* G8 W0 e6 q; q" L
  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306
1 M7 U! @2 F: H7 U+ d  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310   W4 u! Q2 C8 n+ b7 {  ~
4.8.10  Flank Formed by Quadratic Surfaces.........................................313 % I0 P! {( i7 F3 q6 ~
4.9   Load Over the Drill Cutting Edge .........................................................324 * }, e2 Y) n$ W1 |" K
   4.9.1   Uncut Chip Thickness in Drilling ..............................................325 7 _5 ]5 a$ }' [! F0 E
  4.9.2   Load Distribution Over the Cutting Edge ..................................327
8 p$ Q/ \4 G2 I' H8 T4 @! Z5 {4.10  Drills with Curved and Segmented Cutting Edges ................................328 ; H, n6 E+ C, M: ]
  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329 * P3 p7 |) @9 v4 I. a$ f
  4.10.2 Rake Angle.................................................................................332 8 X/ _* r$ ]4 ]' R! O8 p, E
References......................................................................................................337
6 S4 C; O+ V7 Z/ E5   Deep-hole Tools............................................................................................341
9 A4 |/ p& i$ ~; P5.1   Introduction ...........................................................................................341
6 \4 f; @7 M4 t1 M6 n1 w0 M9 L5.2   Generic Classification of Deep-hole Machining Operations.................343
, R  B$ Y( b4 @5 C0 ]$ [5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345 : c6 v0 r. d6 O8 K& D
  5.3.1   Force Balance in Self-piloting Tools..........................................345
! J  l/ U( Z" \7 H$ x1 `5.4   Three Basic Kinematic Schemes of Drilling .........................................350
+ K6 `/ a- v+ m2 d/ }  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351 2 Y2 N  l5 A7 q+ g* }- z* U
5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352
# Q! Y; a0 m! o 5.4.3  Counterrotation ..........................................................................352
# l+ e$ s8 s! T% U' c# n5.5   System Approach ..................................................................................353 ! F8 }) t3 e$ Z0 X
  5.5.1   Handling Tool Failure ................................................................353 . E1 j9 f& F  ^
5.5.2  System Considerations ...............................................................354
3 J$ n1 g2 b+ ]5.6   Gundrills................................................................................................362
' c/ e' I" f" t: ] 5.6.1  Basic Geometry..........................................................................362
3 X9 I+ s- n1 u& l 5.6.2  Rake Surface ..............................................................................365
. S" j  p7 |& }  K) u6 N& s4 G  5.6.3   Geometry of Major Flanks .........................................................370
) `, D! ~% K3 n( n 5.6.4  System Considerations in Gundrill Design ................................390
$ q& Q4 N1 R: X5 X+ b& B5.6.5   Examplification of Significance of the High MWF Pressure ; {0 U9 B3 D" m; w
  in the Bottom Clearance Space ..................................................423 - B! W8 {) ^( C$ Q, A6 _5 \3 Y8 Z
  5.6.6   Example of Experimental Study ................................................425 4 @- [) O) m3 ?8 V
  5.6.7   Optimization of Tool Geometry.................................................439
6 O6 q% y- J5 J" K3 Z: \' DReferences......................................................................................................440
& [+ G$ Q9 ]. a& E' F5 x$ oAppendix A  
8 s9 F' o- U. OBasic Kinematics of Turning and Drilling.......................................................443 3 V/ M7 z5 t& T' |; J- ]/ E' i
A.1   Introduction ...........................................................................................443 : K+ g9 l4 C$ M
A.2  Turning and Boring ...............................................................................444
4 f, e3 t# d+ l/ h  A.2.1  Basic Motions in Turning...........................................................444 ' D8 J' q6 |4 g8 h
  A.2.2  Cutting Speed in Turning and Boring ........................................448
/ O/ D! S  W" `: \- q4 N6 I  A.2.3  Feed and Feed Rate ....................................................................448   ]3 \! J8 j* w, z
  A.2.4  Depth of Cut...............................................................................449
: M" ^7 n" U* Z' @% R A.2.5  Material Removal Rate ..............................................................449
: k. O% z* U  P: p2 U A.2.6  Resultant Motion........................................................................450
$ b: P. G  i" l) ~A.3  Drilling and Reaming ............................................................................450 ( F) R2 i. b# U' N% r
A.3.1  Basic Motions in Drilling...........................................................450 4 i7 f0 T' j+ T5 g- U- V# {
A.3.2  Machining Regime.....................................................................451
& A* f8 F  @( Q' ]3 E& fA.4  Cutting Force and Power .......................................................................453
& K) ?2 b9 g+ b) O' _  A.4.1  Force System in Metal Cutting...................................................453 * Y1 I' P. P2 k; f3 A
  A.4.2  Cutting Power ............................................................................454 1 M: }6 U9 D0 u; E; c: N2 R+ \/ l" X
A.4.3  Practical Assessment of the Cutting Force.................................455 4 m! ^+ X& B6 k' t
References......................................................................................................461 6 y2 N+ W( N. i
Appendix B  
; z  ]  K6 H7 {0 ZANSI and ISO Turning Indexable Inserts and Holders.................................463
& V( ]; r% ~# p9 T# H! SB.1   Indexable Inserts ...................................................................................463 1 H# v1 `. A$ [4 b$ N
  B.1.1  ANSI Code .................................................................................464 6 }! |6 S* R) |. Z1 S  e
B.1.2  ISO Code....................................................................................471
/ f8 Z: b5 B! x" a- z( O  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491
' p  o0 J5 M# r! Y: E0 t  B.2.1   Symbol for the Method of Holding Horizontally Mounted  9 f6 c& n0 \' }/ A
Insert – Reference Position (1) ..............................................................492 + ?8 J$ v, q+ X  D( Y. X4 T. ]# p" J
  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493   \# H9 s' H- O
  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493
' |5 ^- ]7 s; r' K  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  
( s* z6 C5 k  o- p0 ]( q; b& V   Reference Position (4)................................................................494 3 Z+ J, G( @! X% A
  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494
2 |$ O' ?2 `& E7 H  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  - b) p5 [- G! A- w* `9 C3 j# K/ N) V
    and Height of Cutting Edge) - Reference Position (6) ...............494 + ^  O  X% X8 u( I; ]+ u
  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  
2 T/ J. O' M; s0 \! N) F   Reference Position (7)................................................................495 9 u8 e; H( F* J8 x
  B.2.8  Number Symbol Identifying Tool Length –  
8 _; e0 Z* w* j5 x   Reference Position (8)................................................................495
4 V! ]6 V7 H) I) _9 n+ u( c  z  B.2.9   Letter Symbol Identifying Indexable Insert Size –  " x; S- r0 O/ d3 }" f" {
   Reference Position (9)................................................................497
" J3 X8 |/ C0 P. T; AAppendix C  / C! \/ t1 N+ H
Basics of Vector Analysis ..................................................................................499 # k  z3 Q8 U% I1 I) B2 b) m8 D: z0 h
C.1   Vectors and Scalars ...............................................................................499
; h' d/ g, Y9 k2 _! G/ |1 P( ~C.2   Definition and Representation...............................................................500
% V. h0 G8 a" l) v1 i1 o2 `, _ C.2.1  Definitions..................................................................................500 2 P, ^) |. ~. N/ l% I4 }5 b
C.2.2  Basic Vector Operations ............................................................503 # [3 b. [: D3 s. X) }
C.3   Application Conveniences.....................................................................509
0 ?' G( E. Q6 z: S' z7 oC.4  Rotation: Linear and Angular Velocities...............................................511
; n$ B+ e. }2 Z  C.4.1   Planar Linear and Angular Velocities ........................................511 : \2 |8 x. {- S8 j/ [+ ?. f
  C.4.2   Rotation: The Angular Velocity Vector .....................................515
- q$ z8 q: G. h0 J/ M, [4 z; {, GReferences ...........................................................................................................518
  O' D! N" r, m) f( Y& O! rAppendix D  ) G$ y- Z9 [0 s3 Q: x) q5 z
Hydraulic Losses: Basics and Gundrill Specifics............................................519
6 M8 w0 o- @, Z  Z' V7 L9 v( L8 GD.1  Hydraulic Pressure Losses – General ....................................................519   a& g; X7 w! Q
D.1.1  Major Losses: Friction Factor ....................................................520 0 ?2 J+ W& {# C0 c8 Q$ v4 f- w( T
  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521 3 h6 g" F  j6 y5 M
D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521
/ y. c/ c" _# d2 T' f  w* ]  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522 ' H! k$ i( x$ t
  D.2.3  Example D.1...............................................................................527 , d, g% y4 m6 E" |: t. {9 _7 b
D.3   Inlet MWF pressure...............................................................................528 ' y( I8 O. b# w0 q1 @
D.4  Analysis of Hydraulic Resistances ........................................................532
2 l4 ]5 o8 j1 e5 o6 t! H) a  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  * n4 h" ?& u' J
    Has No or Little Control ............................................................532
8 B4 K. k- _. l# `  D.4.2  Variable Resistances Over Which the Designer Has Control ....535 ) n0 L, n5 R$ i  u; p% t7 V
D.5   Practical Implementation in the Drill Design ........................................539
/ Q, n0 t. ^0 Z. ~" U' }/ W; h8 bReferences ..........................................................................................................543
# m# a! d$ [+ ^# i& T- J# U* rAppendix E
9 T+ z2 r  A& @# _Requirements and Examples of Cutting Tool Drawings................................545 0 x0 O+ I  ^' w" X  Q, _- _
E.1   Introduction ...........................................................................................545 # r& R/ q, }( {4 _' G" w7 B! N
E.2   Tool Drawings – the Existent Practice ..................................................546
! n6 q# D: R4 @& Z2 e: e: WE.3   Tool Drawing Requrements ..................................................................548 . F  y( x# K8 p. J% f, w/ T+ E0 `5 X
E.4   Examples of Tool Drawing ...................................................................553 , f0 M% w! e" q% ]" M
References ..........................................................................................................559
3 `7 b8 o* O! G+ b4 c2 ?* tIndex…………………………………………………………………………….561
0 l1 n7 U) S# _! V 2 _# R' C; R4 s( c  j
7 X4 L0 c  b! @) u/ _$ I
5#
發(fā)表于 2011-6-25 13:07:50 | 只看該作者
都是些神馬?
6#
發(fā)表于 2011-6-25 13:33:41 | 只看該作者
埋頭挖礦中,。,。,。,。。,。,。。。
7#
發(fā)表于 2011-6-26 15:14:56 | 只看該作者
好東西啊,。,。。只是,,刀具不是我的工作,。。,。頂起,,不沉。,。,。
8#
 樓主| 發(fā)表于 2011-6-26 18:10:54 | 只看該作者
專(zhuān)業(yè)人士自有看法。
9#
發(fā)表于 2011-6-27 18:42:38 | 只看該作者
好東西啊,,英文的,,看著太費(fèi)勁了
10#
發(fā)表于 2011-6-27 21:53:22 | 只看該作者
從網(wǎng)上查找這本書(shū)是Springer Series in Advanced Manufacturing叢書(shū)中的一本
$ F# R, R2 f6 A請(qǐng)問(wèn)這套叢書(shū)共包含哪幾本書(shū)

本版積分規(guī)則

小黑屋|手機(jī)版|Archiver|機(jī)械社區(qū) ( 京ICP備10217105號(hào)-1,,京ICP證050210號(hào),,浙公網(wǎng)安備33038202004372號(hào) )

GMT+8, 2025-1-11 10:48 , Processed in 0.071620 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回復(fù) 返回頂部 返回列表