|
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯
$ r% T, y! s9 U; H
3 B2 o$ I; q8 w' M
Viscoelastic Materials Roderic Lakes 2009 Part 1-2.rar
(4.42 MB, 下載次數(shù): 6)
2015-1-9 22:29 上傳
點擊文件名下載附件
第一部分 下載積分: 威望 -10 點
5 b: Y! A7 V4 m* Z; e2 M+ G$ s1 v
6 w% R. @' ~- A3 a# D ?. [
Viscoelastic Materials Roderic Lakes 2009 Part 2-2.rar
(3.39 MB, 下載次數(shù): 6)
2015-1-9 22:33 上傳
點擊文件名下載附件
第二部分 下載積分: 威望 -10 點
* V4 n+ o; b3 A1 a a& _' T1 g, z4 V7 Y
目錄4 o; @" T/ B2 H! y4 \/ S
: m- Y3 X; z5 v u
Contents
+ R+ Z: c% h6 r. y. V5 M
6 V7 |) T( k( t0 W, m; uPreface page xvii* u! k$ D% N2 R- \1 e# q7 `* ?
1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
P% s: U8 |' W9 g( t9 x# _0 W1.1 Viscoelastic Phenomena 1, P+ {* T3 _; ~( e! N$ q. \4 M, s% n3 Z' F
1.2 Motivations for Studying Viscoelasticity 39 L1 V* S. Y F
1.3 Transient Properties: Creep and Relaxation 3 X+ l6 N/ r( _" D. J' U- X, E
1.3.1 Viscoelastic Functions J (t), E(t) 3
) a6 s8 P* U9 ^1.3.2 Solids and Liquids 7
- z$ L) d/ C$ q" u* m$ y( U1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8
: `9 K8 `! u2 V4 w/ e2 @1.5 Demonstration of Viscoelastic Behavior 10/ k3 ]8 e1 p, Q" @5 _! o8 }
1.6 Historical Aspects 10
2 ]0 x2 L; B7 Z* W0 X! w1.7 Summary 115 f1 o: x# }0 q, b
1.8 Examples 113 q& c; v8 f8 m, y
1.9 Problems 12
% r' f! f+ ]; n( w, OBibliography 12
& U$ m$ N* w5 d3 J& f9 ?/ N- Z, @: Z; ]7 {4 N8 I
/ p [8 g1 U; D7 L9 x
9 ]) `3 v: u# @- f/ N
1 i3 V" r: i7 W/ `6 h
% ^' T$ o$ J" w' B% D& l$ R# @/ N) i' C- I2 @3 K9 [/ j0 x& M9 M
2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14+ b2 Z# e# l- `- o$ @4 w7 @" \3 @1 d
2.1 Introduction 14
6 _& \5 a7 |: V2 P2.2 Prediction of the Response of Linearly Viscoelastic Materials 14
& ^) |( O1 S5 k* k: o) a2 n( h. I2.2.1 Prediction of Recovery from Relaxation E(t) 142 |7 Y/ u8 I; t* y( B
2.2.2 Prediction of Response to Arbitrary Strain History 15
. ~* L# K @1 `% g: Y# G2.3 Restrictions on the Viscoelastic Functions 17- z( R, l" P; w2 i
2.3.1 Roles of Energy and Passivity 17- b( I" M! y% G0 M. | d" q2 n
2.3.2 Fading Memory 180 b( Y. e0 J' [+ ]% c3 C# Z X. Y" U
2.4 Relation between Creep and Relaxation 19' Q U @9 u0 x/ C
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19! C1 R# @5 Z3 M# K' u- O
2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20
; b, p( q7 } ]% s0 X- P2.5 Stress versus Strain for Constant Strain Rate 205 R* g- s+ i- d8 ^9 a+ f L
2.6 Particular Creep and Relaxation Functions 219 [4 U1 K. a. ~3 `! ~0 A
2.6.1 Exponentials and Mechanical Models 21( W- I* A9 w+ n! E! [2 k
2.6.2 Exponentials and Internal Causal Variables 26
7 U) Q: ^/ B$ J" [. @. }# \2.6.3 Fractional Derivatives 27
" Q5 H0 ]. p" @1 g9 Q2.6.4 Power-Law Behavior 28
/ x% @0 o0 K( E7 S3 r/ m2.6.5 Stretched Exponential 29! ~3 h3 U( a- |: L
2.6.6 Logarithmic Creep; Kuhn Model 29
& w1 {: U1 ^, ]0 E7 W3 J" x2.6.7 Distinguishing among Viscoelastic Functions 30
+ h9 S0 E; F9 Z2.7 Effect of Temperature 30
) \; v- |, t+ c2 E: x! S+ U2.8 Three-Dimensional Linear Constitutive Equation 33
9 s* \! k. R! L! ]4 a* Q2 \4 ]% C2.9 Aging Materials 35
6 \% f1 F0 C( h' F0 T, ?) {9 n2.10 Dielectric and Other Forms of Relaxation 35% r6 K! k. S9 U/ `8 y$ i
2.11 Adaptive and “Smart” Materials 360 U2 |( Y% U8 U2 k4 ^9 k! L* x
2.12 Effect of Nonlinearity 375 @0 W- X6 d! B: a% q1 k* p' o" g
2.12.1 Constitutive Equations 379 e: g, p8 F3 _$ E! Y. x
2.12.2 Creep–Relaxation Interrelation: Nonlinear 409 ]- |3 L: x/ B6 _, R
2.13 Summary 43
7 j' h/ [( I2 X1 u7 Z: F8 i2.14 Examples 43/ u+ B6 l; l9 Q! Y: v
2.15 Problems 51+ `( l7 T3 l5 L0 O7 A% Y# f" R
Bibliography 52+ P" p/ X5 G/ }! ?
; A: @; r! s9 ^/ A6 b' o( \7 M; N, C% {8 Q ~8 x1 _1 n' T: e
* z% N5 T+ o& ?, H! G
( U/ f$ Y7 j+ L2 J
3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5 i K! t% h& \$ Z- [) F: ?3.1 Introduction and Rationale 55
- O" s2 i5 t0 U. P& v3.2 The Linear Dynamic Response Functions E∗, tanδ 56
1 Y0 k- n2 j+ S! i$ A; k' o3.2.1 Response to Sinusoidal Input 57
2 O: f* i) ~( x! l N3.2.2 Dynamic Stress–Strain Relation 591 r& n& u3 C' a" t
3.2.3 Standard Linear Solid 62
% H o# w5 w! [; h0 b$ h: O( {8 L3.3 Kramers–Kronig Relations 63- e: Y) }$ q% v- K& s4 C2 P
3.4 Energy Storage and Dissipation 65' N1 [; H: X: k) O# P+ S8 j" |2 o( y
3.5 Resonance of Structural Members 67
: ^: ^8 d8 S- ?( W2 @9 n5 U3.5.1 Resonance, Lumped System 67
) B4 H* a" {7 ?5 O: H" t$ Z2 {3.5.2 Resonance, Distributed System 71
! U* ?$ P `) v% I6 r* p: b6 p3.6 Decay of Resonant Vibration 74
" t$ C$ U+ e& g3 e% a: k/ d3.7 Wave Propagation and Attenuation 775 G4 R9 l& I. E2 r6 P! U
3.8 Measures of Damping 79
1 `4 e" t% o. M4 e( O3 u! }3.9 Nonlinear Materials 797 I' Q1 ^2 L3 j
3.10 Summary 81+ M; y2 [- J* k
3.11 Examples 81
. C/ e* G0 F0 |8 n3.12 Problems 88! I6 E3 k( [5 S: p4 z- d- _
Bibliography 89
I* r4 i' h j5 d. [
9 y$ ^, Y g1 Y# ^2 w) ~1 b S
`, s& N$ n4 N% k- _9 l3 E8 F+ q: D4 f" B
4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91! K9 w5 a( L) B: F% u8 _% W1 Y
4.1 Introduction 91
' ~9 [3 |" ^% i& g% [4.2 Spectra in Linear Viscoelasticity 92# B) P& U. x: i" W& b( N% U
4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 928 ?) w5 G4 q+ q( v7 x' q
4.2.2 Particular Spectra 93
4 g8 u6 }4 Z! v4.3 Approximate Interrelations of Viscoelastic Functions 95
" W% E0 [! i0 e9 o# N4.3.1 Interrelations Involving the Spectra 95- |& G6 M& x [4 P& F" W
4.3.2 Interrelations Involving Measurable Functions 982 v1 ~( b( o- Q/ U# {9 H: y1 s2 D
4.3.3 Summary, Approximate Relations 1012 C4 O6 k+ g+ S/ s8 t# |. c
4.4 Conceptual Organization of the Viscoelastic Functions 1013 ~; I1 n( D% {. c( T
4.5 Summary 104
9 [8 x& J. N m+ ?9 y4 J/ j4.6 Examples 1047 s2 Q% t; g4 O5 q! A
4.7 Problems 109
; E3 I) @0 z; g" P# YBibliography 1092 D% E; n% ~& N1 Q' o" |
7 S% p l. @8 M ~- ^3 t( E
6 F! ^9 P, S/ T6 Z6 d7 \3 \) c0 F: R* y8 [
5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 1116 B4 M2 _8 u! J# |7 {# ]# a
5.1 Introduction 111
6 g/ Z5 ?! v# A. P; f4 W& m6 Q' t5.2 Three-Dimensional Constitutive Equation 111" m! n* Q3 |* p: ~8 K! g
5.3 Pure Bending by Direct Construction 112. y' L8 p# G% F6 E J. [
5.4 Correspondence Principle 1146 h1 u$ `; o1 r$ I
5.5 Pure Bending by Correspondence 116
% c% x8 `. D3 A& Y& p4 U3 W3 R5.6 Correspondence Principle in Three Dimensions 116' y u/ @( m: U4 N8 w- h+ d( d
5.6.1 Constitutive Equations 116) A( K3 U* Y7 L( ^$ l
5.6.2 Rigid Indenter on a Semi-Infinite Solid 1173 f) Y0 P* _# F. f3 d Q+ t! P; j
5.6.3 Viscoelastic Rod Held at Constant Extension 119
- Z! g7 B9 K$ o) _: J- a: B5.6.4 Stress Concentration 119 N9 b/ n+ F8 H! v* B2 ~/ X8 k
5.6.5 Saint Venant’s Principle 120
* \! y' i& a& p5.7 Poisson’s Ratio ν(t) 1210 b( {; h. S" B$ W+ O" q9 p& S
5.7.1 Relaxation in Tension 121$ ^: x- |$ k4 q4 r5 m6 m
5.7.2 Creep in Tension 123
" V S- j: \" L: Q! l% Q; T5.8 Dynamic Problems: Effects of Inertia 124, B' ^ z c! l* O7 d5 P- J6 r
5.8.1 Longitudinal Vibration and Waves in a Rod 124
7 |6 \, x" X. C5.8.2 Torsional Waves and Vibration in a Rod 125 Q8 _; {% R6 X# ^
5.8.3 Bending Waves and Vibration 128 R0 `3 M' S3 j3 c3 |. O
5.8.4 Waves in Three Dimensions 129
4 e5 a6 U; c0 N% w5.9 Noncorrespondence Problems 131$ Q6 F- n! f/ _% {9 z
5.9.1 Solution by Direct Construction: Example 131
9 p4 x) q* s5 ^6 |1 m5.9.2 A Generalized Correspondence Principle 132
# g* J: ^5 |( |2 i% X t$ ~7 F5.9.3 Contact Problems 132
. @1 G- N8 n% O H/ h( Z. f5.10 Bending in Nonlinear Viscoelasticity 1334 M7 m0 j5 U& ~
5.11 Summary 1340 j6 V4 I. F& ~ h- |- U$ D
5.12 Examples 134 d _( L5 _ B# D# f6 S
5.13 Problems 142 l) V9 w. u* R2 E7 s) ~: t: e; Y
Bibliography 142
% s+ m. q! a" C, v
9 S- S) r( B4 V, t! v+ h1 j6 g$ M2 k5 T$ c5 D4 P
6 S1 ^ ~( l( n/ B0 E7 |: k6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1458 D, v* `; G0 N: l' q: |0 k0 ]
6.1 Introduction and General Requirements 145
) s3 _4 o/ i+ A0 [* C/ s6.2 Creep 146
) x6 W" A* l6 T: |; E8 ]2 d' @- m6.2.1 Creep: Simple Methods to Obtain J (t) 1469 Q6 Y1 F1 v0 f8 e* \; V) r
6.2.2 Effect of Risetime in Transient Tests 146& h1 ~' F4 M/ w, t) g3 j5 H* M2 t5 ] ?
6.2.3 Creep in Anisotropic Media 1482 h2 ^- F. a: `2 O( _3 R3 C6 D# U4 Z6 Q
6.2.4 Creep in Nonlinear Media 148, U/ t- {0 B' k
6.3 Inference of Moduli 150
' f% u0 a! f2 \/ Y6.3.1 Use of Analytical Solutions 150
1 z" t' ]9 H0 b0 I1 k6.3.2 Compression of a Block 151. ^0 G/ M- I$ B* Z# J7 E
6.4 Displacement and Strain Measurement 152
4 @5 X- Y' {4 A4 d6.5 Force Measurement 156/ T7 y+ |( L5 n E5 G+ H# @8 Z* i
6.6 Load Application 157
$ T i1 H$ c7 |+ L6.7 Environmental Control 157
2 m- V6 y4 _ W6.8 Subresonant Dynamic Methods 158; }- ]) m8 a: M# q
6.8.1 Phase Determination 158
' T1 ?/ r S) Z- r$ m N6.8.2 Nonlinear Materials 160
/ G0 N3 c, u# @6.8.3 Rebound Test 161. p9 U5 K) y7 z
6.9 Resonance Methods 161( m0 Z8 M2 x" I: s$ X: e
6.9.1 General Principles 161
# E: A' f0 }- m6 d0 e6.9.2 Particular Resonance Methods 163
! t$ r* }8 f/ z$ [# ` O! c9 ]6.9.3 Methods for Low-Loss or High-Loss Materials 166
( Q9 m5 {/ S# S' K! }$ [+ k6.9.4 Resonant Ultrasound Spectroscopy 1682 L" C4 K& M7 c* V( P* a: C; w
6.10 Achieving a Wide Range of Time or Frequency 171
/ h% w2 H% s; m$ o2 V, j2 n3 X7 _6.10.1 Rationale 171
5 S3 H8 Q) M6 o$ F6.10.2 Multiple Instruments and Long Creep 172* E$ Z+ H# { k4 j u! V
6.10.3 Time–Temperature Superposition 172: w ^& Y+ r) O
6.11 Test Instruments for Viscoelasticity 173
) N9 o2 H$ W/ Y9 t7 T6.11.1 Servohydraulic Test Machines 173
) J, D: B, A8 b3 D/ x8 P/ _6.11.2A Relaxation Instrument 1748 x# \( g1 ?6 x
6.11.3 Driven Torsion Pendulum Devices 174
/ U0 [$ A. v# }' y" T/ b6.11.4 Commercial Viscoelastic Instrumentation 178* i& ?( Q& A% M: C. I4 M% _
6.11.5 Instruments for a Wide Range of Time and Frequency 179- P( ~, |4 t& j- ^
6.11.6 Fluctuation–Dissipation Relation 1829 T3 Q) @* q; _- N: ~; [5 |$ C
6.11.7 Mapping Properties by Indentation 1837 P. _$ K7 e, Z5 h' D& k0 @) H0 N
6.12 Wave Methods 184$ ~. W6 S) v! c8 i' v+ K5 h, B* k5 m
6.13 Summary 188
8 \# g6 k7 x, q( x6.14 Examples 188. O. s. J& X6 B
6.15 Problems 200
) B: M( W% m6 q3 I$ R* b5 ?) a `Bibliography 201
2 z% I3 @# q& N4 j6 c' i) a) R2 O2 t) Q4 ]. M! d) l1 h
1 S7 _0 U6 v# N l6 I5 h
8 I: ]; O" L# w o0 s7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207
: n; u5 e7 ]* E- F$ `7 ~7.1 Introduction 207- k8 L+ p+ K) e1 s+ t# l
7.1.1 Rationale 207
( H4 I% Y8 G% y( G( ^/ V5 l7.1.2 Overview: Some Common Materials 207
* I4 q7 V; `6 {) t) y5 L7.2 Polymers 2083 `# i; }) l4 Y9 U5 R6 K
7.2.1 Shear and Extension in Amorphous Polymers 208) ~( }7 H, L: S: m$ X, o- B! X- M
7.2.2 Bulk Relaxation in Amorphous Polymers 212
) H+ W. Z" p2 K8 v3 @0 L3 k7.2.3 Crystalline Polymers 213+ p; n& Z. l' M1 S4 |& p; i" ~
7.2.4 Aging and other Relaxations 214
& c* a* h# x5 n$ e; W8 ?7.2.5 Piezoelectric Polymers 214$ G- K! Q! T+ }% N% ?6 ~
7.2.6 Asphalt 214$ J0 S" K1 Q7 @% F2 d: }
7.3 Metals 2150 G7 F7 g7 [2 s
7.3.1 Linear Regime of Metals 215, z2 i; c& K) J7 K. x5 ^
7.3.2 Nonlinear Regime of Metals 217* v9 y; C, p5 L& ?8 }( b! s* \4 J' L
7.3.3 High-Damping Metals and Alloys 219* H' p b0 C! ]$ F0 L+ S# C0 W
7.3.4 Creep-Resistant Alloys 224 f9 ^; R3 Q H0 y' n
7.3.5 Semiconductors and Amorphous Elements 225 m, F& L" i5 h: e0 l! y8 Z
7.3.6 Semiconductors and Acoustic Amplification 226
5 @% m4 x2 A. ~9 b- | \" l7.3.7 Nanoscale Properties 2266 M2 d Y/ W6 r
7.4 Ceramics 227' V. G' r: z2 Q( V4 F1 c
7.4.1 Rocks 227
' ^# u7 M- w1 [7.4.2 Concrete 229
5 l& l) X" t7 Q' V/ X( |3 V- q$ S+ _+ B' h7.4.3 Inorganic Glassy Materials 2310 C9 F) l2 K8 L; ^+ l/ i
7.4.4 Ice 231
( a9 f, i% _- V+ I& s+ }/ @7.4.5 Piezoelectric Ceramics 2321 z2 W1 }; q( ?+ n
7.5 Biological Composite Materials 233
; ?+ S e6 H) _- `# j. s7 K7.5.1 Constitutive Equations 2346 ^" l( X/ N* B' J% S9 G V' D
7.5.2 Hard Tissue: Bone 234
) h6 F& T- h7 V7.5.3 Collagen, Elastin, Proteoglycans 236
6 x+ C0 w8 `: u! M7 b7.5.4 Ligament and Tendon 237
Z/ S' u; V. d, T% W7.5.5 Muscle 240
0 D% D9 A7 Y( [, P6 I' E7.5.6 Fat 243$ ] {' \4 r9 D( O6 g8 c
7.5.7 Brain 2439 E/ h# G2 A. r2 F& Z4 Q3 l$ H
7.5.8 Vocal Folds 244+ T0 m2 {" |* F! u8 i; N5 P
7.5.9 Cartilage and Joints 244
1 ^ Q+ ~0 K$ f6 T/ p; e7.5.10 Kidney and Liver 246& [2 R: S7 e6 p1 n5 \
7.5.11 Uterus and Cervix 246% [& {; T' t' q* s5 L) N
7.5.12 Arteries 247
) n. n- [' I2 O; Z7.5.13 Lung 248$ j9 ?$ y+ [+ @8 L
7.5.14 The Ear 248
* m3 e( k+ U# \1 k$ G8 L7.5.15 The Eye 249
" v {5 g2 a6 |; E: l8 ]7.5.16 Tissue Comparison 251
' R: U Y9 _7 e/ w: I7.5.17 Plant Seeds 2522 C3 o2 `) m5 T q7 _" X
7.5.18 Wood 252
; U' m- ~4 M( C7 Y$ e7.5.19 Soft Plant Tissue: Apple, Potato 253; @# r9 m2 z9 C! E
7.6 Common Aspects 253
$ {# M i6 h5 I. A. Q& h/ `$ c! o7.6.1 Temperature Dependence 253& Q& F4 L- J$ W4 V
7.6.2 High-Temperature Background 2546 A. `* ^, D: l \
7.6.3 Negative Damping and Acoustic Emission 255* \2 U2 Y/ e: x" I9 _
7.7 Summary 255
" \5 N5 a7 m, y+ N% L; }4 e7.8 Examples 255; W- h {5 Q) F4 v. g/ `" F3 L
7.9 Problems 256
/ s3 ]( M4 r: `" ^# E5 p6 _8 s& GBibliography 257 F9 s* C- V% m
4 y6 D" b1 k) m
3 A9 |& p0 Q& ?: R2 _
8 p6 d, h) ^9 E) d8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
" D& C2 ]. `+ }9 f9 L$ r8.1 Introduction 271
$ u/ x+ X6 U4 g& h2 I& P Y( x8.1.1 Rationale 271! J& f4 x( K0 Y( n% \* a- S
8.1.2 Survey of Viscoelastic Mechanisms 2717 I. |# @, M: l" p, J0 s
8.1.3 Coupled Fields 273% I: K/ d& q. l$ X8 h8 `
8.2 Thermoelastic Relaxation 274
" t9 R$ p# V" [/ U8.2.1 Thermoelasticity in One Dimension 274
( M f) ?) v- P2 u$ j+ B( Z8.2.2 Thermoelasticity in Three Dimensions 275# `$ |6 g$ C: u+ _0 ]2 m8 q) `
8.2.3 Thermoelastic Relaxation Kinetics 276: O9 M9 Q2 I/ L3 v' z* k7 b# @* v
8.2.4 Heterogeneity and Thermoelastic Damping 278
$ A( |; A4 z; K: D8 M6 m8 j, P# s8.2.5 Material Properties and Thermoelastic Damping 280
" M0 ]1 J- ~; S8.3 Relaxation by Stress-Induced Fluid Motion 280
. V. x! Y; |% z3 a" o+ s& B+ E' b5 ~8.3.1 Fluid Motion in One Dimension 280
7 }1 J* n7 T/ W; f3 G! q9 H; X S7 a8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281
& Q/ k& _9 ^; f" r% p9 X: R: B- ?8.4 Relaxation by Molecular Rearrangement 286* m/ ?% p( S4 A$ V- x
8.4.1 Glassy Region 286- W& F' f u" u
8.4.2 Transition Region 287
1 s; m7 `4 ^# X8.4.3 Rubbery Behavior 2898 y+ D7 @( W7 p# P* D+ F7 p
8.4.4 Crystalline Polymers 291
C0 V5 P& n% |8.4.5 Biological Macromolecules 292
) m1 o3 l* C" x8.4.6 Polymers and Metals 292( N5 t% M2 G7 e& m
8.5 Relaxation by Interface Motion 292. f$ g' O; c5 ~, I5 e5 m
8.5.1 Grain Boundary Slip in Metals 292
" j: }" r- }$ F5 N! N8.5.2 Interface Motion in Composites 294 ^/ i( d* Y8 ^% i
8.5.3 Structural Interface Motion 294; ^7 y) r! q9 ~7 K2 @( q
8.6 Relaxation Processes in Crystalline Materials 294
( w w: [1 A4 |+ I8.6.1 Snoek Relaxation: Interstitial Atoms 2940 U" p: o+ r2 Q# |8 K# ~/ p% X
8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298
% D* |1 Y" Z, U9 P$ [8.6.3 Gorsky Relaxation 299
( h. k/ O5 f$ L6 L8 S8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300* f f, s; n% C8 q$ n. m
8.6.5 Bordoni Relaxation: Dislocation Kinks 303
3 l! ^+ Q5 S6 G- {, k8 C8.6.6 Relaxation Due to Phase Transformations 305
. p, p/ z5 ~: y! D/ B* U8.6.7 High-Temperature Background 314
9 q# ]1 b' b8 [, T- o$ i; n8.6.8 Nonremovable Relaxations 315. p' F R. J; J, C4 C
8.6.9 Damping Due to Wave Scattering 316
2 l% F8 ?: W) h2 S' Q6 m) ^& }: |( f8.7 Magnetic and Piezoelectric Materials 316
0 l' V$ H/ z9 P$ L( i" d6 d. O8.7.1 Relaxation in Magnetic Media 316$ e2 t2 H2 K( ?/ I+ d* D- O1 d# O. w8 B
8.7.2 Relaxation in Piezoelectric Materials 3187 m( O3 i( k+ J0 d' N
8.8 Nonexponential Relaxation 322
2 J+ n0 Y+ C+ `9 R4 @5 g8.9 Concepts for Material Design 323
5 R% z& \( n; i* M8.9.1 Multiple Causes: Deformation Mechanism Maps 323$ B; h' g" A4 ~' A' W) F" s. C3 f* q# A
8.9.2 Damping Mechanisms in High-Loss Alloys 326
7 k- ~& A! F$ w) S8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326 B1 O# z/ n- @% y1 [1 ^
8.10 Relaxation at Very Long Times 327
4 f j3 H( L/ C8.11 Summary 3274 F2 Y! }1 X) c% F6 \! L
8.12 Examples 328 _* d6 l( [# u
8.13 Problems and Questions 332- r: X$ x$ E! ^. q
Bibliography 332# j$ G& O) }: {6 q& G q, }
8 w: n) J# b0 m8 {* {
: p! \+ c8 N7 p, g3 ^$ P% ~% v" \4 ^7 n+ x
9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341
( h# q5 v/ h8 Q' O; c- O! g! y$ E9.1 Introduction 341: a' \0 L; c) P
9.2 Composite Structures and Properties 341
m) a `! q2 p* V8 h" H0 L9.2.1 Ideal Structures 341
# p# p$ c" q! v9 k: S' D9.2.2 Anisotropy due to Structure 342
+ q0 t- G1 @2 D+ a$ E9.3 Prediction of Elastic and Viscoelastic Properties 344* b4 i# t% C. U
9.3.1 Basic Structures: Correspondence Solutions 344
8 K3 e+ s( ?( E- {# ~2 ]9.3.2 Voigt Composite 345: L ^! d. G7 c+ k& r
9.3.3 Reuss Composite 345/ x* j( [9 O4 [9 h7 r, h
9.3.4 Hashin–Shtrikman Composite 346% X+ E f9 \# }$ I& h6 {
9.3.5 Spherical Particulate Inclusions 347
! n+ e" W: X; }9.3.6 Fiber Inclusions 349
8 X0 g& U5 O0 L3 f) X9 M9.3.7 Platelet Inclusions 349# y( i, y! a8 H( d4 R3 l
9.3.8 Stiffness-Loss Maps 350
. L# A1 x/ ]+ x# y7 O$ n9.4 Bounds on the Viscoelastic Properties 353; [, N9 z, C2 |9 c/ l+ }
9.5 Extremal Composites 3541 t% ?7 c7 C5 ?" I2 R8 `
9.6 Biological Composite Materials 3562 j( f/ M' y6 o [
9.7 Poisson’s Ratio of Viscoelastic Composites 357
: X: p7 Q& O1 ^9.8 Particulate and Fibrous Composite Materials 3580 T4 ]# c: ~6 l0 C; c' k
9.8.1 Structure 358
8 `9 C! U `1 D. N9.8.2 Particulate Polymer Matrix Composites 359
9 H0 \8 t; |, M* I$ H, m8 L* W9.8.3 Fibrous Polymer Matrix Composites 361- T6 s: i* {8 p& T! n
9.8.4 Metal–Matrix Composites 362
* O/ _/ v5 U$ P! d7 K9.9 Cellular Solids 3635 v c. c% n# }' h
9.10 Piezoelectric Composites 366; R. D \, ]) r5 r |- A4 ]
9.11 Dispersion of Waves in Composites 3664 Y% ]. U6 w! Y6 d; d) ~
9.12 Summary 3672 u3 v. K0 B! C) m
9.13 Examples 367
# c. s; n! C% A2 ?) j9 e* M9.14 Problems 370
9 |2 D4 R8 p4 W* n2 k$ d3 O' YBibliography 370
+ @- [8 Y1 Y% p/ a4 X B/ K
0 U% c2 b) P5 q6 L
8 t& g+ f7 M/ f. R
2 P. v* Q& i% i N. {6 u; w10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 3777 _( K2 U7 e1 K1 \* q- k. f
10.1 Introduction 3774 U( n g% @( E) _3 v
10.2 A Viscoelastic Earplug: Use of Recovery 377
2 }' U m( M9 R9 p10.3 Creep and Relaxation of Materials and Structures 378
2 \' o1 E; [( Q6 T+ h2 L/ w- |8 ?10.3.1 Concrete 378
9 r) @7 m1 v% G5 x, O% e10.3.2 Wood 378
2 A5 U6 T* b a7 \6 y% v10.3.3 Power Lines 379
2 V; R! o" I' I10.3.4 Glass Sag: Flowing Window Panes 380
( f! s+ X1 R* P, g2 x: ~& g10.3.5 Indentation: Road Rutting 380- { ]1 w' \2 i' v5 } A- w
10.3.6 Leather 381
# Q+ k( N8 q5 Q& F$ S( U% h10.3.7 Creep-Resistant Alloys and Turbine Blades 381+ }7 i/ J! ?' s4 U) g, w) W' T4 \
10.3.8 Loosening of Bolts and Screws 382
! [9 D; |, ?$ S' D8 y1 P10.3.9 Computer Disk Drive: Case Study of Relaxation 384
3 w1 h3 m, V, ~7 s: B) p" I5 v/ W" ~10.3.10 Earth, Rock, and Ice 385
6 Q& i& s6 ~% G& B7 N# ^10.3.11 Solder 3862 K' y6 U: l+ h- E7 U
10.3.12 Filamentsi nL ight Bulbs and Other Devices 3873 c! i4 |9 x& n+ E$ F& E3 Z E
10.3.13Tires: Flat-Spotting and Swelling 3888 M' Q }$ n: ?' S* _8 Q" ~2 A
10.3.14Cushionsfor Seats and Wheelchairs 388
# m2 E& ]& y1 H5 c10.3.15 Artificial Joints 389
1 x1 Y# S+ n* c& }% C( N4 c: S( o10.3.16 Dental Fillings 3892 c( r2 W3 I6 T7 e5 r
10.3.17 Food Products 389
1 C# F. a1 ?6 S( E$ Z10.3.18 Seals and Gaskets 390
& i; I# ^# y% P. {7 K10.3.19 Relaxationi nM usical Instrument Strings 3906 h$ m2 J+ Y) r) T6 O1 L) X7 e
10.3.20 Winding of Tape 391
" R! E+ a1 Y |( g10.4 Creep and Recovery in Human Tissue 391
2 h% ~* a; Y0 Q$ x0 h/ I! B10.4.1 Spinal Discs: Height Change 391& w2 c% p5 X; X
10.4.2 The Nose 392, X3 D$ e( i5 k6 N0 t2 ]
10.4.3 Skin 392
" [4 [) ]& [. S: }. d10.4.4 The Head 393
: s% w9 \0 L, [, A10.5 Creep Damage and Creep Rupture 394: w# b/ h8 J, d
10.5.1 Vajont Slide 394& I! Q( G- ~# l9 U. X# T6 B
10.5.2 Collapse of a Tunnel Segment 394
5 F. h1 F, G' u$ M9 G5 ?: o10.6 Vibration Control and Waves 3942 X2 b. n2 @8 }; R
10.6.1 Analysis of Vibration Transmission 3941 X1 \2 _/ m* h# X* {* y
10.6.2 Resonant (Tuned) Damping 3975 I2 M, }. O3 c* O, Z
10.6.3 Rotating Equipment Vibration 397
6 E! l8 ?& Y: `0 F- N5 T+ {; ^& L10.6.4 Large Structure Vibration: Bridges and Buildings 398
* s& j' U8 M; I2 g |4 l10.6.5 Damping Layers for Plate and Beam Vibration 399
: O7 ?9 t6 G1 d( D10.6.6 Structural Damping Materials 400. n# o" X5 _- Z4 M
10.6.7 Piezoelectric Transducers 402/ B7 x8 x, G6 B1 W A" _" }
10.6.8 Aircraft Noise and Vibration 402$ d+ N2 }" c# \
10.6.9 Solid Fuel Rocket Vibration 4040 p/ X+ N, l1 [/ a3 O Y
10.6.10 Sports Equipment Vibration 404
" ~# e2 Q+ F2 S2 u! u10.6.11 Seat Cushions and Automobiles: Protection of People 404% V* @8 g" L* g- |- O3 V
10.6.12 Vibrationi n ScientificI nstruments 406
. b1 ^* K: t, a8 X4 c10.6.13 Waves 406
, n Q: x- X8 U# Z- g! ~! `10.7 “Smart” Materials and Structures 407
: B% \% t2 H, i. q10.7.1 “Smart” Materials 407
! f7 z( |% T+ _+ d4 U5 H# _10.7.2 Shape Memory Materials 408
4 U# H- T7 ~- h; Z- {/ M0 F( A! v10.7.3 Self-Healing Materials 409" j) w$ v. }! F$ Z$ ]( |
10.7.4 Piezoelectric Solid Damping 409- ~1 r6 o- |' R3 i- N- l# K6 f
10.7.5 Active Vibration Control: “Smart” Structures 409
5 I' w: ?2 c. w" u6 A10.8 Rolling Friction 409
" O$ L. N% z6 `0 f10.8.1 Rolling Analysis 410
) k: ^# P, h: T* Z( P$ w% u8 e10.8.2 Rolling of Tires 411) h- U" T) F" ?& o7 w7 D# o+ Q$ }/ x
10.9 Uses of Low-Loss Materials 412# |! j7 R; B# g- [
10.9.1 Timepieces 412
# X6 j8 N; v6 I10.9.2 Frequency Stabilization and Control 413
; l" Y* T" w2 w% L5 i4 u10.9.3 Gravitational Measurements 4134 }6 m. D; _$ _9 q
10.9.4 Nanoscale Resonators 414" v. [' N' r; R0 w* `' }
10.10 Impulses, Rebound, and Impact Absorption 414! C! ~5 p6 ], s% i4 i
10.10.1 Rationale 414
0 T3 {3 o' _' j: B4 g# {10.10.2 Analysis 415$ @8 D, _+ Q0 ]/ u$ B
10.10.3 Bumpers and Pads 418
4 v+ d- V. [, ?10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 4194 Y8 q$ O; B+ V1 c% E
10.10.5 Toughness of Materials 419
1 |3 h% m1 v+ P1 T W4 l10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420. u% w) Q% ?6 F2 H5 A$ H9 T: |
10.11Rebound of a Ball 421( a+ Y9 u- m* ? b( T V' y S
10.11.1 Analysis 421
0 F9 s; B+ s" k5 V; N' k10.11.2 Applications in Sports 422
4 s5 t7 ~4 D# r M10.12 Applications of Soft Materials 424" o) c( d# ^ i- ]% g% Y
10.12.1 Viscoelastic Gels in Surgery 4241 j) x- T) Q& [/ D
10.12.2 Hand Strength Exerciser 424& d) b$ G3 u9 @3 s4 ]
10.12.3 Viscoelastic Toys 424" N% i0 h3 k8 T4 r4 q1 x
10.12.4 No-Slip Flooring, Mats, and Shoe Soles 4258 ]( M7 e! U3 c$ H- I1 t
10.13 Applications Involving Thermoviscoelasticity 425
8 L# Q7 N- }$ r. d( e10.14 Satellite Dynamics and Stability 426
* T, H, p$ W# C( G2 J% |* C, h$ N10.15 Summary 428
) @8 ] M9 F% B7 U6 z10.16 Examples 429
6 [( I- j8 Q- O8 A4 ^" A8 `10.17 Problems 431
8 y3 K3 S' T. UBibliography 431
. T. _7 H1 d1 y, O
( J9 T3 J1 D @$ I; K l' w$ p) w3 J" f7 g+ l
3 S# B. s1 h$ j( Q* k/ w" |! v
A: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4414 p t7 M( n. t% R4 F
A.1 Mathematical Preliminaries 441
7 x: X& c! f6 d1 E/ i- L( z* iA.1.1 Introduction 441
+ X% s! p3 `* D6 q' W8 mA.1.2 Functionals and Distributions 441
: n1 I8 C0 Z% O s; F& f: {( w+ jA.1.3 Heaviside Unit Step Function 4425 }4 ], A4 T9 Y( K4 k1 w1 I: h
A.1.4 Dirac Delta 4426 }/ t' K- G& f) m
A.1.5 Doublet 443
' u2 F; Z" W9 lA.1.6 Gamma Function 445: U0 E; L3 G: a/ ^% l) ?" p4 C
A.1.7 Liebnitz Rule 4459 Z2 Q8 ^/ n9 ]7 m8 O
A.2 Transforms 445
/ ]1 v6 ]- U! A' VA.2.1 Laplace Transform 446
- O7 G( H3 ~0 ~! rA.2.2 Fourier Transform 446
) t- M' q; o- hA.2.3 Hartley Transform 447
7 q6 u- v8 \9 }* ~0 g6 tA.2.4 Hilbert Transform 447# o! O* |( u4 A" h
A.3 Laplace Transform Properties 448
! G. _6 g4 K4 H5 l0 J3 y8 X/ rA.4 Convolutions 449
/ ]6 y5 B/ }5 NA.5 Interrelations in Elasticity Theory 451
2 {/ C, x/ V# b; bA.6 Other Works on Viscoelasticity 451/ g. K! w2 K, {/ U
Bibliography 452; g. G% b! K: b ]6 F; h0 b
: @4 A2 k, i8 S
) B9 H/ l! j& WB: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
' W) j% X% h5 d; M4 p# ]1 sB.1 Principal Symbols 455
2 B( l+ Q8 L7 O% A* `) `Index 457: q& ]3 o- V$ [6 T! g
5 m" |+ h9 J1 m+ { S
1 V% U' V2 m) |: b: k1 l$ E
|
|