七七影院色七七_免费观看欧美a一级黄片_亚洲综合久久久久久中文字幕_国产999999在线视频免费观看,国产小视频无码,国产精品亚洲日日摸夜夜添,女人高潮潮叫免费网站,久久影院国产精品,日韩成人在线影院,欧美囗交XX×BBB视频,色在线综合高清

機械社區(qū)

 找回密碼
 注冊會員

QQ登錄

只需一步,快速開始

搜索
查看: 1202|回復: 0
打印 上一主題 下一主題

英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》

[復制鏈接]
跳轉到指定樓層
1#
發(fā)表于 2015-1-9 22:34:06 | 只看該作者 回帖獎勵 |倒序瀏覽 |閱讀模式
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯 1 J/ z2 U3 W* L

0 t  }" o8 \- S. b2 {3 d Viscoelastic Materials Roderic Lakes 2009 Part 1-2.rar (4.42 MB, 下載次數(shù): 6) + v1 Y  l- v: r" X( H% u& z

8 {5 y# {. i0 o0 l3 [7 b Viscoelastic Materials Roderic Lakes 2009 Part 2-2.rar (3.39 MB, 下載次數(shù): 6)
; g1 A2 x$ _5 s  X  p$ @" }: |. s$ t6 I! z) m9 V6 W! m
目錄' X& \/ K% w( t5 S4 y
8 P/ f& G9 K+ n" y
Contents
: h9 ~# z5 @0 i) ^$ U! y: n
- ?- F  e2 [, C8 p; R; F; [Preface page xvii
# S* j- G+ f; h6 w4 W8 k$ F4 l) L1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
! n9 V! ?9 u1 n3 ^- G6 \8 H1.1 Viscoelastic Phenomena 15 M. @* Q6 I9 u1 C
1.2 Motivations for Studying Viscoelasticity 3
- d6 O) {) Q1 H1 H/ e3 q1.3 Transient Properties: Creep and Relaxation 31 S4 S4 k* [2 X/ k8 h- b
1.3.1 Viscoelastic Functions J (t), E(t) 3
. s( J: f, Z0 f& `1.3.2 Solids and Liquids 7
- e! Z0 Q4 G" r; I& V" J1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8
9 ]! m$ `3 m9 ^. a" ?/ f1 h& l1.5 Demonstration of Viscoelastic Behavior 103 a) g, t8 s  B' W
1.6 Historical Aspects 10  A4 N7 P7 d! z- Q9 s
1.7 Summary 118 [6 _! X, Y- P1 @( x, {1 t
1.8 Examples 11
8 W  b7 c+ n) L# T$ [( Y9 R2 _. k" ]1.9 Problems 120 Z5 q# q& J0 @
Bibliography 12
* Z7 X, s0 [! q' P4 g+ U% U
: k( b7 \7 x9 l0 L- a! _7 M! m; k  g4 q

; n- ~; o, w/ k1 |) q
- E1 _. y# ^9 s. L4 ^# F) |. C$ s
0 c% y; Z8 H- f. }
# \0 H# K8 k2 \  E$ ~# w2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
! q0 @$ C' u- E5 ~7 Y( M/ `2.1 Introduction 140 Y# T- u& @" |) G# E1 I9 J% @
2.2 Prediction of the Response of Linearly Viscoelastic Materials 14
; [0 f) B8 i, }& G9 P$ d* b: @2.2.1 Prediction of Recovery from Relaxation E(t) 14* J( P2 T4 N" k
2.2.2 Prediction of Response to Arbitrary Strain History 15+ Y7 x9 o% T" B7 q' M. e
2.3 Restrictions on the Viscoelastic Functions 17
2 `4 w! |  E7 N; a! J2.3.1 Roles of Energy and Passivity 17
* L4 o2 h9 k) _4 E: e2.3.2 Fading Memory 184 N" X3 P" w! Q6 O
2.4 Relation between Creep and Relaxation 199 O7 c7 K0 A' T) Z
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19: T+ c6 k) ^, K) W0 i* d
2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20
* q4 p0 k' c1 }6 F  ^- a( H( [( \1 M2.5 Stress versus Strain for Constant Strain Rate 20* Q4 S2 E- x5 p6 {2 q
2.6 Particular Creep and Relaxation Functions 21  f- V3 ]; B2 s. Y
2.6.1 Exponentials and Mechanical Models 21$ g$ Z, q& e# u7 y; r- O' E
2.6.2 Exponentials and Internal Causal Variables 26$ P& f" r; }# n
2.6.3 Fractional Derivatives 271 k/ j* t$ R* |
2.6.4 Power-Law Behavior 28  t7 f1 H$ f" a2 N) O
2.6.5 Stretched Exponential 29
" y8 J9 @1 @5 V% N2 {. A2.6.6 Logarithmic Creep; Kuhn Model 29$ }* T+ ~1 {/ F- k5 y% q
2.6.7 Distinguishing among Viscoelastic Functions 30/ _  {$ P! M5 ^$ e4 _6 a
2.7 Effect of Temperature 30* B! a) g- S  X4 t
2.8 Three-Dimensional Linear Constitutive Equation 33
* P6 O/ }6 `6 H2.9 Aging Materials 35# x* v) u7 C- }( W7 r
2.10 Dielectric and Other Forms of Relaxation 35
7 z% Z* ~3 G& q: X* q2.11 Adaptive and “Smart” Materials 36* v. |+ L2 \: [+ ?+ l
2.12 Effect of Nonlinearity 37
. }) ?: E& U3 G* ~6 ]7 e( k2.12.1 Constitutive Equations 37, B; K0 g3 x# `. D
2.12.2 Creep–Relaxation Interrelation: Nonlinear 40
$ q4 [5 T' i) ^! N$ d, k8 u2.13 Summary 43
. p" g# f2 Y$ p0 V" X2.14 Examples 43: Z6 w4 [' [" |7 B2 H3 O
2.15 Problems 51- B1 O5 K$ k# v4 v
Bibliography 52' o2 l9 g+ q- w
) d) G, @, \) x5 Q$ b; B

+ b% i$ p/ |7 g2 M9 t* p3 K5 J4 o
. K! n/ c/ n3 A6 ^& N, P6 v
3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55+ S, G5 I& Y4 u
3.1 Introduction and Rationale 55$ Q/ B: G$ O8 k6 p1 U3 \, ^; [
3.2 The Linear Dynamic Response Functions E∗, tanδ 56
" Q, J3 J' T4 h+ F* G3.2.1 Response to Sinusoidal Input 57
( c  ?+ r, g! p3.2.2 Dynamic Stress–Strain Relation 597 u/ H! `" V9 L8 K9 ]
3.2.3 Standard Linear Solid 623 E7 _! ~( U; [% }/ Z; |4 S( {
3.3 Kramers–Kronig Relations 63" C4 U8 n0 }0 R2 h( O/ Z  t
3.4 Energy Storage and Dissipation 65
' c' }* A, D- y: u2 W3.5 Resonance of Structural Members 67' m; k& q) Z/ P& E2 R0 a) Y
3.5.1 Resonance, Lumped System 67
+ Q. s$ M' A) `7 }1 e$ O, N. {8 ?  \' f3.5.2 Resonance, Distributed System 71
0 t( r% @8 f9 \$ T  g: Q6 V; z( x3.6 Decay of Resonant Vibration 74! l* i7 O, S7 p- v
3.7 Wave Propagation and Attenuation 77
' j  M  f* t  p1 }# f2 Q& D3.8 Measures of Damping 79. `: T( }" t* p% J9 C+ W
3.9 Nonlinear Materials 794 [2 h* R6 }5 e! e
3.10 Summary 81' T: L2 b- O8 t: M# b4 `
3.11 Examples 81
9 U  A3 }1 F1 A& X6 j5 V) ^4 l3.12 Problems 88- O+ f0 A; a1 f0 p1 R2 p; b* C3 ~; i+ N
Bibliography 89
7 D) _" R, t" Z6 G7 h8 ]% [! v, H, V' a2 ^* ]9 q
3 M$ J! }$ r( j7 e

% c* l+ x& l% E5 W4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91- {3 L: U8 [6 c' \) s
4.1 Introduction 91- m  f" V5 P3 _* E$ E; Z% p2 A% K
4.2 Spectra in Linear Viscoelasticity 92
1 _9 t0 j6 y) |: \1 M# v! |2 }4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 929 ]6 C, g7 ?6 o' j* y
4.2.2 Particular Spectra 93
8 o- `3 {% ~/ A( x4 T! `4.3 Approximate Interrelations of Viscoelastic Functions 95
# s9 l0 K/ c- @. o4 b; L: [4.3.1 Interrelations Involving the Spectra 95
7 l; ]: c0 a* Z9 o# Z4.3.2 Interrelations Involving Measurable Functions 98
& ^8 o6 n2 l6 V6 t. p) o! C) _  \: V4.3.3 Summary, Approximate Relations 101! G8 s, a* l$ q; l
4.4 Conceptual Organization of the Viscoelastic Functions 101
9 r1 o' Z! f- z4.5 Summary 104- i7 K" H, g0 ~  X/ P5 x
4.6 Examples 104
9 L3 @1 o) [% m" @& l# C: v0 \4.7 Problems 109/ [- [/ k% A  U4 O. Y% ~
Bibliography 109" ?* A" V, V1 m

% ^3 o1 M1 i, _) v
& i  [4 a9 U* |1 n
# D* I  @; K4 B5 Y5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 1111 H! Z3 p* K$ L3 Z4 y5 I& Q
5.1 Introduction 111
9 ~5 Z. B, V' u0 `5.2 Three-Dimensional Constitutive Equation 111
1 b8 J# Y5 y9 @& J+ w5.3 Pure Bending by Direct Construction 112
1 A  ~: o$ p8 j5 r1 A4 f1 \5.4 Correspondence Principle 114
6 M& N# y& ?  t+ x, H; @/ K5.5 Pure Bending by Correspondence 116
' b8 B  p) t; G1 V# ^5.6 Correspondence Principle in Three Dimensions 116
" u; n5 ]' K  r  C5.6.1 Constitutive Equations 116
! g3 T: O  c, g( |9 G, \# e+ Z8 ^5.6.2 Rigid Indenter on a Semi-Infinite Solid 117: f, Z4 [3 S0 o
5.6.3 Viscoelastic Rod Held at Constant Extension 119# u9 O% [; C4 j$ Y8 R
5.6.4 Stress Concentration 119. d+ y& n: V2 e9 @
5.6.5 Saint Venant’s Principle 120
& E1 O+ C! k3 t& ?5.7 Poisson’s Ratio ν(t) 121% h) l; l4 h2 [$ s$ h
5.7.1 Relaxation in Tension 121
( _. p% q* f$ C6 _5.7.2 Creep in Tension 123
  ]" b* D" d) E% y# H9 W' \5.8 Dynamic Problems: Effects of Inertia 124
7 U4 I. [9 B( h" G) V6 @/ y, N% H5.8.1 Longitudinal Vibration and Waves in a Rod 124# F- j% V  z, w
5.8.2 Torsional Waves and Vibration in a Rod 125
7 ~6 G: _- u. J5 n$ n$ b5.8.3 Bending Waves and Vibration 128# R6 l' w0 I% W) z
5.8.4 Waves in Three Dimensions 129
1 c3 S" {2 P; U6 T) C- J3 e5.9 Noncorrespondence Problems 131
- b5 h2 }- \  f$ P5.9.1 Solution by Direct Construction: Example 131
' n$ x9 B9 A7 d5.9.2 A Generalized Correspondence Principle 132% }" P& B' h1 y- k! e' ?# r3 q# _
5.9.3 Contact Problems 132
" t* t8 ]8 p! d6 W: }5.10 Bending in Nonlinear Viscoelasticity 133
' V/ r" ~8 A9 {$ H5 f5 F: H$ x5.11 Summary 134
4 X/ Y! {6 t. t% s5.12 Examples 134
1 o! ~( l' S5 Z. P6 u# M5 x5.13 Problems 142
/ C$ t; R2 o) @4 i' y3 ]Bibliography 142
# M* ~% o/ H, B7 Q: D2 H' L8 U" o- I) o& V- w! h
$ t4 b! v2 V4 J4 N: X& Q% J
: a" Z0 y- o  h
6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145) b) j( l" N. Z0 F; v" w" b
6.1 Introduction and General Requirements 145# p+ U: E/ u2 @  e0 @) Z
6.2 Creep 1463 ~* [% q1 t  ]6 s' ~. e4 S# u/ [3 F
6.2.1 Creep: Simple Methods to Obtain J (t) 146
5 H3 L6 h: Y( s+ I6.2.2 Effect of Risetime in Transient Tests 146
/ A/ J. f/ k5 o8 u& H6.2.3 Creep in Anisotropic Media 148" y2 b6 k" N- `; R
6.2.4 Creep in Nonlinear Media 148
! E9 T* n$ W: J+ q6.3 Inference of Moduli 150
2 z4 {  Z: N5 s5 l1 ~" M4 Q# ~6.3.1 Use of Analytical Solutions 150
0 P  o" l! t$ H" I6.3.2 Compression of a Block 151
# J5 g. o$ ^' D& E9 L& M. g6.4 Displacement and Strain Measurement 152
4 W. ]# e5 y% u3 b8 d. l6.5 Force Measurement 1567 D* Q$ _( X/ ~/ U" O
6.6 Load Application 1575 C" ^- j  a) q: W
6.7 Environmental Control 157( o) |5 z8 U1 t. g3 i/ `+ L/ n7 @- r
6.8 Subresonant Dynamic Methods 158# A: G2 u* Z3 u  o5 k8 [( r; N
6.8.1 Phase Determination 158$ v7 U& y4 J8 K
6.8.2 Nonlinear Materials 160
: x0 e; N( M, q. m6 B3 i6.8.3 Rebound Test 1614 q; f" u9 K% ]( q& s0 }- O
6.9 Resonance Methods 161
+ t4 P. U. D4 I  p6.9.1 General Principles 161
% K6 B9 ~0 R1 Q- b3 g+ X$ l8 o6.9.2 Particular Resonance Methods 163: a+ _7 {! u9 o- P
6.9.3 Methods for Low-Loss or High-Loss Materials 166; a4 F* U5 m! z; w
6.9.4 Resonant Ultrasound Spectroscopy 168; h' O- p; ^0 Z2 }& S$ [5 [
6.10 Achieving a Wide Range of Time or Frequency 171
( e9 Q4 R( ^8 W" k( T0 X  d0 A6.10.1 Rationale 171+ |: T8 x4 c; J5 n6 p" D
6.10.2 Multiple Instruments and Long Creep 172
+ y) P1 T6 S1 r4 V5 Q: g! r6.10.3 Time–Temperature Superposition 172. l0 W, v/ p7 X3 a
6.11 Test Instruments for Viscoelasticity 173+ D, R/ \" k; ~7 }( h4 X
6.11.1 Servohydraulic Test Machines 173
; D6 Y$ C' \; N+ F  L0 X3 G5 |; |6.11.2A Relaxation Instrument 174& D+ H9 Y+ o2 N+ H& f
6.11.3 Driven Torsion Pendulum Devices 1744 R* k; f. {' _* a2 q
6.11.4 Commercial Viscoelastic Instrumentation 178
! u& C0 c3 M( ^$ E6.11.5 Instruments for a Wide Range of Time and Frequency 179
& N' Z/ |: Y: |/ v6.11.6 Fluctuation–Dissipation Relation 182
; H3 i4 |7 u% r( u/ f7 ]' _5 x6.11.7 Mapping Properties by Indentation 183
4 V; L3 q4 o  `( a& |6.12 Wave Methods 184
- E/ V% g6 q' @# N6.13 Summary 188
& B1 p- i# W* b; I3 r$ k6.14 Examples 1887 D+ _7 T' n6 x' i+ [9 t0 E
6.15 Problems 200; C5 i& R+ c# H% z
Bibliography 201
$ ]- N7 g' G/ I3 l
: ?1 S& Z/ N, K- G
. Z1 A, {% N# p- S) T( P- d9 ?# |" G- y
7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207( p, A, V/ w' I" o& l, f' E7 S
7.1 Introduction 207
3 z5 Q8 W+ V% k: s" w. c7.1.1 Rationale 207
: A  f, p0 k- H( M9 j0 v$ A4 e7.1.2 Overview: Some Common Materials 207
) A0 X# A$ N0 Z7.2 Polymers 208
* d# Y" w2 b( ~/ a7.2.1 Shear and Extension in Amorphous Polymers 208* M$ f1 ~# r$ j3 m
7.2.2 Bulk Relaxation in Amorphous Polymers 2123 H1 |, \* u5 Q4 d0 |- Q
7.2.3 Crystalline Polymers 2139 B& J% }3 C2 w# Y0 z
7.2.4 Aging and other Relaxations 214; V) _+ V# x% W, U8 f& b% k
7.2.5 Piezoelectric Polymers 214
/ @- p2 _/ c" L0 C7.2.6 Asphalt 214$ q# A# M/ }5 q6 a, h- R
7.3 Metals 215
% `; I& X9 x  ]' I/ m7.3.1 Linear Regime of Metals 215
* i& ?7 h4 O( Q# W$ X; u" ?7.3.2 Nonlinear Regime of Metals 217
3 ^7 `6 i* {. g* f& J7.3.3 High-Damping Metals and Alloys 219
% y( n7 v1 U, \( L. k7.3.4 Creep-Resistant Alloys 224
# N5 V: L4 D$ e$ c7.3.5 Semiconductors and Amorphous Elements 225: P9 d9 L0 W0 y# O: `+ H1 n4 K
7.3.6 Semiconductors and Acoustic Amplification 226
2 Y0 t0 `, }# D7.3.7 Nanoscale Properties 226
7 z8 T# A! _  f7.4 Ceramics 227
/ h7 ~5 \% z1 q# k3 u% C9 s$ |2 q7.4.1 Rocks 227
: I/ S5 o" j0 M  j' T7.4.2 Concrete 229- L0 F* f: q4 y* b
7.4.3 Inorganic Glassy Materials 231# H& x) l: q, A' j
7.4.4 Ice 231( y7 Y$ Q! J+ k7 ]3 O  E" K6 e
7.4.5 Piezoelectric Ceramics 232* ?: F4 D6 ]4 @5 z2 ^
7.5 Biological Composite Materials 2338 Y6 T9 y" k- A( m) q5 b
7.5.1 Constitutive Equations 234
& g& T5 q) S0 ?; z; Q( ?& M7.5.2 Hard Tissue: Bone 234
9 y" ?  H+ T5 M6 Z7.5.3 Collagen, Elastin, Proteoglycans 236. a* o1 h' }4 q6 ?9 ~+ x( v
7.5.4 Ligament and Tendon 237
, e; J, z. ~- W* p7.5.5 Muscle 240
; ~* `" V9 Z9 c' _. \4 \7.5.6 Fat 243
, Z2 u( E8 D. P. T5 @! P1 q# \4 A7.5.7 Brain 243
  q% p+ w5 ~! _0 O1 L7.5.8 Vocal Folds 244
  p& r4 {4 c( V- X  l7.5.9 Cartilage and Joints 244
4 g$ n; {- X5 p8 L% A$ x7.5.10 Kidney and Liver 246
: s  \% `7 K3 t. N7.5.11 Uterus and Cervix 246- b. a2 _' c& }) Q5 o
7.5.12 Arteries 247
2 c. Q4 w; \& p, j: M( O7.5.13 Lung 2481 n- d$ f& v# _, y
7.5.14 The Ear 248
' X+ F' {# n+ F0 v) ]/ D, c4 W7.5.15 The Eye 249
- c& z4 _7 ]2 }* F+ t$ A  d7.5.16 Tissue Comparison 251
7 F: d- J1 M3 W6 ~: d9 J7.5.17 Plant Seeds 252
) z  L5 u3 H% f7.5.18 Wood 252
5 I. {/ e' O. A8 M6 r7.5.19 Soft Plant Tissue: Apple, Potato 253. z3 F/ p+ B4 a: b) K0 ?( G; W
7.6 Common Aspects 253
0 L% R' t, l3 Z) z+ v7 ^) s0 b' \7.6.1 Temperature Dependence 253& K- Y6 j" }8 [3 a  T9 I. q
7.6.2 High-Temperature Background 254- r$ W# B5 E6 l% F5 }. ~. n
7.6.3 Negative Damping and Acoustic Emission 255
- W: d8 c5 U. h! v- o6 k7 b7.7 Summary 255# I7 _) I) S) C# l7 B6 ^) x
7.8 Examples 255
& f* h2 i- ]) K7.9 Problems 256
: G, ?- K% b9 d! b& L% q' y. mBibliography 2578 {9 M8 ?3 @: F7 m8 k; A

2 B& q5 I; [6 F, Q/ x- d7 y" r( B6 A; ?; F' S# H8 F2 S2 w3 y: U" v
) I, t* _  n* ]6 @; v# x5 _1 I! R% T
8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
+ i4 G& N5 d. S6 I2 }1 [. p8.1 Introduction 271' X' V% f- W- _. a. m
8.1.1 Rationale 271, ~) Z4 V- H( I9 a$ K' d' e& T% \
8.1.2 Survey of Viscoelastic Mechanisms 271
1 ^$ j& X% |# W! E! g8.1.3 Coupled Fields 273% i! k) O7 h6 h5 J! ?3 g
8.2 Thermoelastic Relaxation 274
, R7 G+ `8 W/ Y1 m1 ?8 a& D8 Z8.2.1 Thermoelasticity in One Dimension 274
3 I0 {6 t+ R& [8.2.2 Thermoelasticity in Three Dimensions 275& v+ W2 y/ P% N  `$ V
8.2.3 Thermoelastic Relaxation Kinetics 276
5 l+ z7 {, ^3 p. [8.2.4 Heterogeneity and Thermoelastic Damping 278- r7 _0 @2 N2 l; o9 N! n1 T
8.2.5 Material Properties and Thermoelastic Damping 2809 v: O4 C2 o0 o$ n. i/ \) m+ @5 \& L
8.3 Relaxation by Stress-Induced Fluid Motion 2803 p9 x9 ^# r9 k  a9 W7 u1 I, R$ q
8.3.1 Fluid Motion in One Dimension 280
; }9 C3 ]9 s1 J- ^' A2 c  y: p8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281! G% r- g4 `" Q! B& [2 w
8.4 Relaxation by Molecular Rearrangement 286
9 G  |! J' u5 h, I1 Z8.4.1 Glassy Region 2860 g( g) l# o  l$ r' S4 c3 D  f
8.4.2 Transition Region 287
" C; O! d) G& A) @8.4.3 Rubbery Behavior 289. T  l' s5 R  B/ o3 s
8.4.4 Crystalline Polymers 291& e$ R7 p1 e9 q% d
8.4.5 Biological Macromolecules 292* f9 t) \) f8 C6 H
8.4.6 Polymers and Metals 292
& I; Q. g! H7 o# E* A6 x+ r( E  e8.5 Relaxation by Interface Motion 292" ^: ^; O, O- d) F/ {0 q- e0 \
8.5.1 Grain Boundary Slip in Metals 292% ^! i* p* `% ^1 v
8.5.2 Interface Motion in Composites 294& G9 l/ v$ }) Q, t0 [
8.5.3 Structural Interface Motion 294. c  v, m# w. L% P$ E  Q  ^1 L  H
8.6 Relaxation Processes in Crystalline Materials 294
+ z; w% |, m! _- Z0 Y8.6.1 Snoek Relaxation: Interstitial Atoms 294
3 Y3 v" O: o4 k" O' V" O8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298
! F6 [- \. b! \+ K. {8.6.3 Gorsky Relaxation 2990 H5 c- f9 T2 W* y. @1 O! @
8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 3002 k3 R6 T3 U6 ^4 {, S4 h
8.6.5 Bordoni Relaxation: Dislocation Kinks 303
: r9 o* V! p9 H7 F: I0 e! S+ v. a' ?8.6.6 Relaxation Due to Phase Transformations 305
7 c; N. M& h9 u* z. l+ O8.6.7 High-Temperature Background 3140 I4 C/ Q" W. m7 m
8.6.8 Nonremovable Relaxations 315$ e1 g: K4 J  O( K
8.6.9 Damping Due to Wave Scattering 316
) n" i. V( V( s0 C( U' c8.7 Magnetic and Piezoelectric Materials 316
/ p5 a! U" G' K/ c8.7.1 Relaxation in Magnetic Media 316
( S9 R4 T1 J* `, J* H  w* ^$ n3 f8.7.2 Relaxation in Piezoelectric Materials 318: O8 O: V+ m5 }% V! ?, \6 [  S( R
8.8 Nonexponential Relaxation 322/ ]) X* z" g7 v* G$ Y
8.9 Concepts for Material Design 323
( x2 ]8 ?. K# I7 R7 B8.9.1 Multiple Causes: Deformation Mechanism Maps 3239 J9 J7 w6 E5 F+ ]7 z, I' F
8.9.2 Damping Mechanisms in High-Loss Alloys 326
+ |. P$ r' D: k/ ^2 y" {8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326
! g# Z1 d% Z" ^$ `% M* h+ m: W8.10 Relaxation at Very Long Times 327! Q" M$ h6 x  J  R% P0 {
8.11 Summary 327
2 w; m: m: f6 K6 S. L3 m8.12 Examples 328' Q4 Q6 K3 W3 ^) W- Y  m( n
8.13 Problems and Questions 332  h- g7 Q5 P/ m( ~: e
Bibliography 332
1 J% U1 U! f5 z9 V7 @0 o3 N6 E4 I* e. [' W  V3 B
5 j4 Y3 G2 {0 w7 S& c) s5 ]) f( \
: U3 I) Y9 f7 ?" o& K8 m
9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341
( Q4 k& u' Q, e* ]9.1 Introduction 341
# x5 }% q* i6 v$ W; i5 Y9.2 Composite Structures and Properties 341
( u4 j. \, z2 z0 P7 ^; V/ |# ^& @9.2.1 Ideal Structures 341
' A" V; O( ^% `( G* W( ?# V9.2.2 Anisotropy due to Structure 342( l3 J* P7 \8 D: a' y* |5 L8 a0 Q
9.3 Prediction of Elastic and Viscoelastic Properties 3443 X+ v% o6 Q* R0 ~) G
9.3.1 Basic Structures: Correspondence Solutions 344
1 {4 K8 e& y. S4 d2 _3 m9 M9.3.2 Voigt Composite 3452 j2 w! U3 ?4 z' B& h
9.3.3 Reuss Composite 3450 U; P. A% c/ {/ j# ~+ ^
9.3.4 Hashin–Shtrikman Composite 3467 p. U  F5 k, }. B
9.3.5 Spherical Particulate Inclusions 3473 }8 {! O. i- q, {
9.3.6 Fiber Inclusions 349, d5 v( y/ x3 A
9.3.7 Platelet Inclusions 349
4 n& V# ]. ]. u; }+ r9.3.8 Stiffness-Loss Maps 350
  ^# a1 F' j# R3 k5 c! r* }; _9.4 Bounds on the Viscoelastic Properties 3533 Q6 t# r3 _( O/ ~! a
9.5 Extremal Composites 3545 X" w2 d1 z; c2 d
9.6 Biological Composite Materials 356
- @5 L4 L( V' R+ O: u' R! ^" @$ ~9.7 Poisson’s Ratio of Viscoelastic Composites 357
. C$ W% L" d, K& n9 ]/ G9.8 Particulate and Fibrous Composite Materials 358
7 j1 @: S' T1 ?( Y$ b& G9 W: P9.8.1 Structure 358: w! G6 t( ~! F6 [
9.8.2 Particulate Polymer Matrix Composites 359
9 a& q, _& h5 W# z8 j/ K9.8.3 Fibrous Polymer Matrix Composites 361
6 q5 J! @8 ~3 l$ |. ^9.8.4 Metal–Matrix Composites 362
1 p6 N4 |4 Z: ~: |9.9 Cellular Solids 3630 r) H4 w5 J+ C9 L5 S: y/ G
9.10 Piezoelectric Composites 3667 |6 {7 K( i+ p: ^- ]
9.11 Dispersion of Waves in Composites 366
  N, Y# C: }. p- m% {. N. i$ Q9.12 Summary 367' \0 }/ T/ _5 E: ]" F6 A8 @
9.13 Examples 367! x5 c0 H& B8 c7 x
9.14 Problems 370
( ?( N7 d* D0 f. b0 QBibliography 370
9 C& L* z" z" Y2 b/ e5 c* F
4 o1 M5 e8 q/ Q2 T: Q
  E: ]" c, L& L( ^" [1 W
( `+ J4 K/ f' j' C: {: ]' P10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377
2 f7 F0 G7 N! P  P7 }10.1 Introduction 377
  V& H; E( |. M$ `2 \/ v  O4 k10.2 A Viscoelastic Earplug: Use of Recovery 377
3 L6 u- P* z# n# y" n/ q! f6 y! h10.3 Creep and Relaxation of Materials and Structures 378+ u9 V9 r/ ~5 a: L3 z( A
10.3.1 Concrete 378% @: F2 w2 a3 B) n1 @
10.3.2 Wood 378, V7 E2 b  X: y% n. K- @' }
10.3.3 Power Lines 379
# V" r0 a  p; s) H- M6 |10.3.4 Glass Sag: Flowing Window Panes 380
4 L+ ]6 O) H: [/ I7 b10.3.5 Indentation: Road Rutting 380
2 ~- Y+ {% x- P9 @8 @10.3.6 Leather 381
3 O# Y0 j# _  P- `3 ~- K" K5 m10.3.7 Creep-Resistant Alloys and Turbine Blades 381
. s$ n+ ]6 A9 S6 e; x8 H& G10.3.8 Loosening of Bolts and Screws 382! P, D7 T. O, A7 c4 w3 ]  `& V1 k: E
10.3.9 Computer Disk Drive: Case Study of Relaxation 384
% P" Q9 e' s& q* V9 X10.3.10 Earth, Rock, and Ice 385
- L  A9 O6 u9 q4 U4 q3 D( R10.3.11 Solder 386
, @* v/ A/ ?4 b/ H/ b4 T10.3.12 Filamentsi nL ight Bulbs and Other Devices 387
4 \# j% ]! p: F: z' Z10.3.13Tires: Flat-Spotting and Swelling 3885 _& e& {3 V& W6 n& H4 j& r
10.3.14Cushionsfor Seats and Wheelchairs 388
* L- h9 f9 m) i/ L3 u% f) j4 x10.3.15 Artificial Joints 389; K: ?! C; t! c6 r
10.3.16 Dental Fillings 389' d4 d8 I6 z! C' E5 G$ q% y% r2 y0 D- n. t
10.3.17 Food Products 389
& y( [; O) i2 X; V# ?0 i; |9 u7 y7 r, O. l10.3.18 Seals and Gaskets 390
6 Y& s$ L1 I) G10.3.19 Relaxationi nM usical Instrument Strings 390; g6 K. \: U& M4 w( R! W
10.3.20 Winding of Tape 3914 D  |* U2 B) a* k' ]. p) h
10.4 Creep and Recovery in Human Tissue 391% q8 c* E" d. M' r. b4 t
10.4.1 Spinal Discs: Height Change 391
) d5 J0 W1 a0 E! q10.4.2 The Nose 392
5 S5 @2 \1 t) A: d: {6 \( L4 r10.4.3 Skin 392$ {9 B8 x" E( @! m) f# D5 D
10.4.4 The Head 393
4 P* e5 v: M. G4 G. g' t10.5 Creep Damage and Creep Rupture 3948 q2 R' f/ R4 E2 j, F
10.5.1 Vajont Slide 394- F4 k- z' {# U5 O2 @
10.5.2 Collapse of a Tunnel Segment 394+ n% @8 d8 G5 ^1 _
10.6 Vibration Control and Waves 394
9 D6 E- K1 t5 Y5 r3 n10.6.1 Analysis of Vibration Transmission 3947 e- ~9 N; T; i
10.6.2 Resonant (Tuned) Damping 397
  _7 b; E  I# u, P" h9 x& |) t10.6.3 Rotating Equipment Vibration 397; f1 F, I, ~6 I% \5 U6 {
10.6.4 Large Structure Vibration: Bridges and Buildings 3988 o6 e% d/ N' W. X2 v4 L
10.6.5 Damping Layers for Plate and Beam Vibration 399& }% V$ d) M' C9 |! E" F: I
10.6.6 Structural Damping Materials 400
! {% H5 ^; H( Y$ K6 R* o10.6.7 Piezoelectric Transducers 402
: |  l* ]; T6 L2 c, h- |4 j10.6.8 Aircraft Noise and Vibration 402" _6 N4 `+ t+ ]
10.6.9 Solid Fuel Rocket Vibration 404" w7 j" b7 r$ d4 Q
10.6.10 Sports Equipment Vibration 4042 \9 I: n4 E/ R# j* C
10.6.11 Seat Cushions and Automobiles: Protection of People 404
7 L  e4 U% z: j+ s0 e10.6.12 Vibrationi n ScientificI nstruments 406
0 m$ Z2 m& F* y10.6.13 Waves 4069 i6 A) k1 y) O# V. [7 H- Z
10.7 “Smart” Materials and Structures 407+ I9 @1 }( I7 `9 x+ X9 y* c+ h
10.7.1 “Smart” Materials 4071 B7 Q* x' M' l( Y: X. o
10.7.2 Shape Memory Materials 408  Y4 w0 j* \- v
10.7.3 Self-Healing Materials 409
% D$ s9 j6 a9 F3 f+ X6 V10.7.4 Piezoelectric Solid Damping 409
# P% c/ D4 S! c, y# S. Z10.7.5 Active Vibration Control: “Smart” Structures 409. x. a3 H( @4 Z5 |. _
10.8 Rolling Friction 409
+ W1 d- E6 C* e7 r) h( U' U10.8.1 Rolling Analysis 410
0 W) }* Z6 r( o8 H$ d9 l/ x1 w10.8.2 Rolling of Tires 411
- O+ C6 ^( [- I; n8 A, W10.9 Uses of Low-Loss Materials 412
* c* x  A0 M' h, B10.9.1 Timepieces 4122 z. c: Q7 \0 a/ A
10.9.2 Frequency Stabilization and Control 4134 B* D8 n, h' y6 R6 b% e  k5 H
10.9.3 Gravitational Measurements 413! M# r  e8 ]4 y! A* j9 O
10.9.4 Nanoscale Resonators 414; E1 }3 M1 d& G: x3 u
10.10 Impulses, Rebound, and Impact Absorption 414" Q/ i' a* \( K* ?1 }
10.10.1 Rationale 414) S5 [( e3 a# a0 y) B# p5 g( B
10.10.2 Analysis 415" [! d, |# v$ l
10.10.3 Bumpers and Pads 418
! `+ T% ]1 V+ r3 p2 g7 r10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419
2 P$ j+ p5 s4 L10.10.5 Toughness of Materials 419
, e/ V1 K# h' o1 n10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420, U  g' F- Z* z  |5 R6 E) c& b; g
10.11Rebound of a Ball 421
1 a/ n, T5 q: C2 B4 m10.11.1 Analysis 421
  Z, W' Y! a( c' o10.11.2 Applications in Sports 422
7 ~# r1 ]  r$ i6 [" J10.12 Applications of Soft Materials 424: m% I# Y* k' Q1 \! |! O
10.12.1 Viscoelastic Gels in Surgery 424/ I" R; M' z; V& @
10.12.2 Hand Strength Exerciser 424' O/ |  x7 ]7 ]
10.12.3 Viscoelastic Toys 424
) Z8 K% e+ l( {% Y10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425  M5 Z2 z4 M7 M/ z
10.13 Applications Involving Thermoviscoelasticity 425
0 h- ]# M$ n1 |* B8 ^8 j- O10.14 Satellite Dynamics and Stability 426
- ^1 P2 T7 X6 J# K10.15 Summary 428: W8 \; o$ S! n6 k
10.16 Examples 429
9 Y! P* Q  ]( G7 l* E10.17 Problems 431
+ x3 F; Y- x$ R, W) OBibliography 431
* E* y1 r2 T1 P2 y, a& t
5 Q3 ]/ R2 ^6 B* N! A" H* H; ^" R' c% M- ?6 |* b

! W) w8 o# I) P( d: y( E% b6 WA: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
8 f7 k0 ?; O! h" ?! X; U. B  cA.1 Mathematical Preliminaries 441
: `% j% `; X7 L% UA.1.1 Introduction 441
: O) _9 P4 o/ o$ ~A.1.2 Functionals and Distributions 441
; P" G' S9 \! A  G3 h, N' N$ I7 q4 tA.1.3 Heaviside Unit Step Function 442
& g9 ?! A& ^9 k( ?/ l; wA.1.4 Dirac Delta 442
/ Q) c% s2 a! }2 xA.1.5 Doublet 4430 ?/ q6 K0 v7 f: C, T
A.1.6 Gamma Function 445
3 \  v. O: l# @$ a! t8 c5 J: P3 A- ]A.1.7 Liebnitz Rule 445$ N( _$ S! Z/ [1 E4 x
A.2 Transforms 445
* J$ V. p' Y8 n4 l. DA.2.1 Laplace Transform 4466 P' N" w( o  H: D2 j- e
A.2.2 Fourier Transform 446- \3 x  l; z* ^# S
A.2.3 Hartley Transform 447
: p) t6 X* B& A; |, o" N7 P4 hA.2.4 Hilbert Transform 447
- C' d$ ^# L% _3 VA.3 Laplace Transform Properties 448
# r/ a/ {+ U; x% `$ BA.4 Convolutions 4491 b" @* b5 U. `/ o6 J- J
A.5 Interrelations in Elasticity Theory 4512 F; r8 u' X% Q7 k( S, y. G3 T
A.6 Other Works on Viscoelasticity 451# P. S( m7 ^# D- E
Bibliography 452
9 G) N5 T- M# n& l" i. b; x5 Q8 k# F9 l1 j

7 }0 ^! N* ^" J. M: Y* bB: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
9 n2 @% A- h& s9 M% N0 pB.1 Principal Symbols 455) k) K5 ]3 b, w
Index 457* k. S$ h+ b& j, H/ O
5 n# n- Q+ O. g" |6 K+ M* ]

. [* \/ [: [6 h. r4 w1 x: j) ~
您需要登錄后才可以回帖 登錄 | 注冊會員

本版積分規(guī)則

小黑屋|手機版|Archiver|機械社區(qū) ( 京ICP備10217105號-1,京ICP證050210號,,浙公網(wǎng)安備33038202004372號 )

GMT+8, 2025-4-22 00:11 , Processed in 0.066888 second(s), 21 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回復 返回頂部 返回列表